Properties

Label 2-624-13.12-c5-0-26
Degree $2$
Conductor $624$
Sign $-0.971 - 0.234i$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 86.8i·5-s + 98.7i·7-s + 81·9-s + 610. i·11-s + (592. + 143. i)13-s + 781. i·15-s − 1.14e3·17-s + 2.26e3i·19-s + 888. i·21-s − 433.·23-s − 4.41e3·25-s + 729·27-s + 7.66e3·29-s + 7.36e3i·31-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.55i·5-s + 0.761i·7-s + 0.333·9-s + 1.52i·11-s + (0.971 + 0.234i)13-s + 0.897i·15-s − 0.963·17-s + 1.44i·19-s + 0.439i·21-s − 0.170·23-s − 1.41·25-s + 0.192·27-s + 1.69·29-s + 1.37i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 - 0.234i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.971 - 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $-0.971 - 0.234i$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{624} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ -0.971 - 0.234i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.690019049\)
\(L(\frac12)\) \(\approx\) \(2.690019049\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
13 \( 1 + (-592. - 143. i)T \)
good5 \( 1 - 86.8iT - 3.12e3T^{2} \)
7 \( 1 - 98.7iT - 1.68e4T^{2} \)
11 \( 1 - 610. iT - 1.61e5T^{2} \)
17 \( 1 + 1.14e3T + 1.41e6T^{2} \)
19 \( 1 - 2.26e3iT - 2.47e6T^{2} \)
23 \( 1 + 433.T + 6.43e6T^{2} \)
29 \( 1 - 7.66e3T + 2.05e7T^{2} \)
31 \( 1 - 7.36e3iT - 2.86e7T^{2} \)
37 \( 1 + 1.05e4iT - 6.93e7T^{2} \)
41 \( 1 - 3.69e3iT - 1.15e8T^{2} \)
43 \( 1 - 6.06e3T + 1.47e8T^{2} \)
47 \( 1 - 8.74e3iT - 2.29e8T^{2} \)
53 \( 1 - 3.47e4T + 4.18e8T^{2} \)
59 \( 1 + 1.19e4iT - 7.14e8T^{2} \)
61 \( 1 + 4.54e4T + 8.44e8T^{2} \)
67 \( 1 + 4.56e4iT - 1.35e9T^{2} \)
71 \( 1 + 2.38e4iT - 1.80e9T^{2} \)
73 \( 1 + 3.77e4iT - 2.07e9T^{2} \)
79 \( 1 - 3.53e4T + 3.07e9T^{2} \)
83 \( 1 - 3.14e4iT - 3.93e9T^{2} \)
89 \( 1 + 5.90e4iT - 5.58e9T^{2} \)
97 \( 1 + 4.96e3iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34502308784576475178183050912, −9.387018642100795803142021835039, −8.507688236771129014688361174740, −7.51174484146521779400399471214, −6.72659945489127875809895469565, −6.01070420502578545403821063739, −4.51850985886635876298616475890, −3.49548563156376494989870306763, −2.50460952834648100192678411711, −1.74006164358501563498803382170, 0.60399422954393106045835562205, 1.04640521067619181113254337760, 2.65351100516922038907593373695, 3.91239337289357224795388079396, 4.61017018053627682220870614476, 5.73156100919380872246432907298, 6.75869678639090112478506835928, 8.024821882266853532768251249942, 8.678219701210480503264542930186, 9.029098946886832169529376897368

Graph of the $Z$-function along the critical line