L(s) = 1 | + 9·3-s + 86.8i·5-s + 98.7i·7-s + 81·9-s + 610. i·11-s + (592. + 143. i)13-s + 781. i·15-s − 1.14e3·17-s + 2.26e3i·19-s + 888. i·21-s − 433.·23-s − 4.41e3·25-s + 729·27-s + 7.66e3·29-s + 7.36e3i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.55i·5-s + 0.761i·7-s + 0.333·9-s + 1.52i·11-s + (0.971 + 0.234i)13-s + 0.897i·15-s − 0.963·17-s + 1.44i·19-s + 0.439i·21-s − 0.170·23-s − 1.41·25-s + 0.192·27-s + 1.69·29-s + 1.37i·31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(−0.971−0.234i)Λ(6−s)
Λ(s)=(=(624s/2ΓC(s+5/2)L(s)(−0.971−0.234i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
−0.971−0.234i
|
Analytic conductor: |
100.079 |
Root analytic conductor: |
10.0039 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :5/2), −0.971−0.234i)
|
Particular Values
L(3) |
≈ |
2.690019049 |
L(21) |
≈ |
2.690019049 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−9T |
| 13 | 1+(−592.−143.i)T |
good | 5 | 1−86.8iT−3.12e3T2 |
| 7 | 1−98.7iT−1.68e4T2 |
| 11 | 1−610.iT−1.61e5T2 |
| 17 | 1+1.14e3T+1.41e6T2 |
| 19 | 1−2.26e3iT−2.47e6T2 |
| 23 | 1+433.T+6.43e6T2 |
| 29 | 1−7.66e3T+2.05e7T2 |
| 31 | 1−7.36e3iT−2.86e7T2 |
| 37 | 1+1.05e4iT−6.93e7T2 |
| 41 | 1−3.69e3iT−1.15e8T2 |
| 43 | 1−6.06e3T+1.47e8T2 |
| 47 | 1−8.74e3iT−2.29e8T2 |
| 53 | 1−3.47e4T+4.18e8T2 |
| 59 | 1+1.19e4iT−7.14e8T2 |
| 61 | 1+4.54e4T+8.44e8T2 |
| 67 | 1+4.56e4iT−1.35e9T2 |
| 71 | 1+2.38e4iT−1.80e9T2 |
| 73 | 1+3.77e4iT−2.07e9T2 |
| 79 | 1−3.53e4T+3.07e9T2 |
| 83 | 1−3.14e4iT−3.93e9T2 |
| 89 | 1+5.90e4iT−5.58e9T2 |
| 97 | 1+4.96e3iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.34502308784576475178183050912, −9.387018642100795803142021835039, −8.507688236771129014688361174740, −7.51174484146521779400399471214, −6.72659945489127875809895469565, −6.01070420502578545403821063739, −4.51850985886635876298616475890, −3.49548563156376494989870306763, −2.50460952834648100192678411711, −1.74006164358501563498803382170,
0.60399422954393106045835562205, 1.04640521067619181113254337760, 2.65351100516922038907593373695, 3.91239337289357224795388079396, 4.61017018053627682220870614476, 5.73156100919380872246432907298, 6.75869678639090112478506835928, 8.024821882266853532768251249942, 8.678219701210480503264542930186, 9.029098946886832169529376897368