Properties

Label 2-627-1.1-c1-0-12
Degree $2$
Conductor $627$
Sign $-1$
Analytic cond. $5.00662$
Root an. cond. $2.23754$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.27·2-s − 3-s − 0.377·4-s − 1.37·5-s + 1.27·6-s + 0.651·7-s + 3.02·8-s + 9-s + 1.75·10-s + 11-s + 0.377·12-s − 4.27·13-s − 0.829·14-s + 1.37·15-s − 3.10·16-s + 7.33·17-s − 1.27·18-s + 19-s + 0.519·20-s − 0.651·21-s − 1.27·22-s − 1.20·23-s − 3.02·24-s − 3.10·25-s + 5.44·26-s − 27-s − 0.245·28-s + ⋯
L(s)  = 1  − 0.900·2-s − 0.577·3-s − 0.188·4-s − 0.615·5-s + 0.520·6-s + 0.246·7-s + 1.07·8-s + 0.333·9-s + 0.554·10-s + 0.301·11-s + 0.108·12-s − 1.18·13-s − 0.221·14-s + 0.355·15-s − 0.775·16-s + 1.77·17-s − 0.300·18-s + 0.229·19-s + 0.116·20-s − 0.142·21-s − 0.271·22-s − 0.251·23-s − 0.618·24-s − 0.620·25-s + 1.06·26-s − 0.192·27-s − 0.0464·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(5.00662\)
Root analytic conductor: \(2.23754\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 627,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 + 1.27T + 2T^{2} \)
5 \( 1 + 1.37T + 5T^{2} \)
7 \( 1 - 0.651T + 7T^{2} \)
13 \( 1 + 4.27T + 13T^{2} \)
17 \( 1 - 7.33T + 17T^{2} \)
23 \( 1 + 1.20T + 23T^{2} \)
29 \( 1 - 1.10T + 29T^{2} \)
31 \( 1 + 4.19T + 31T^{2} \)
37 \( 1 + 0.245T + 37T^{2} \)
41 \( 1 + 7.23T + 41T^{2} \)
43 \( 1 + 7.67T + 43T^{2} \)
47 \( 1 + 3.82T + 47T^{2} \)
53 \( 1 + 7.47T + 53T^{2} \)
59 \( 1 - 6.85T + 59T^{2} \)
61 \( 1 + 3.37T + 61T^{2} \)
67 \( 1 + 9.57T + 67T^{2} \)
71 \( 1 + 0.576T + 71T^{2} \)
73 \( 1 - 5.33T + 73T^{2} \)
79 \( 1 - 6.23T + 79T^{2} \)
83 \( 1 + 4.07T + 83T^{2} \)
89 \( 1 - 6.46T + 89T^{2} \)
97 \( 1 + 15.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.924549471617796332262500994941, −9.583585427432778695523747435070, −8.253760316686257791040291356920, −7.73361933927410955078460037748, −6.90592032690430360733658389615, −5.46698421603451104779260461323, −4.68140921102196253909645667842, −3.50169197808424830648642498962, −1.53482211517777572812253890228, 0, 1.53482211517777572812253890228, 3.50169197808424830648642498962, 4.68140921102196253909645667842, 5.46698421603451104779260461323, 6.90592032690430360733658389615, 7.73361933927410955078460037748, 8.253760316686257791040291356920, 9.583585427432778695523747435070, 9.924549471617796332262500994941

Graph of the $Z$-function along the critical line