L(s) = 1 | − 0.696·2-s + 3-s − 1.51·4-s − 2.51·5-s − 0.696·6-s − 2.32·7-s + 2.44·8-s + 9-s + 1.75·10-s − 11-s − 1.51·12-s + 1.69·13-s + 1.61·14-s − 2.51·15-s + 1.32·16-s + 7.58·17-s − 0.696·18-s − 19-s + 3.81·20-s − 2.32·21-s + 0.696·22-s + 0.248·23-s + 2.44·24-s + 1.32·25-s − 1.18·26-s + 27-s + 3.52·28-s + ⋯ |
L(s) = 1 | − 0.492·2-s + 0.577·3-s − 0.757·4-s − 1.12·5-s − 0.284·6-s − 0.878·7-s + 0.865·8-s + 0.333·9-s + 0.553·10-s − 0.301·11-s − 0.437·12-s + 0.470·13-s + 0.432·14-s − 0.649·15-s + 0.331·16-s + 1.83·17-s − 0.164·18-s − 0.229·19-s + 0.852·20-s − 0.507·21-s + 0.148·22-s + 0.0518·23-s + 0.499·24-s + 0.265·25-s − 0.231·26-s + 0.192·27-s + 0.665·28-s + ⋯ |
Λ(s)=(=(627s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(627s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8537836998 |
L(21) |
≈ |
0.8537836998 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 11 | 1+T |
| 19 | 1+T |
good | 2 | 1+0.696T+2T2 |
| 5 | 1+2.51T+5T2 |
| 7 | 1+2.32T+7T2 |
| 13 | 1−1.69T+13T2 |
| 17 | 1−7.58T+17T2 |
| 23 | 1−0.248T+23T2 |
| 29 | 1−10.2T+29T2 |
| 31 | 1−2.07T+31T2 |
| 37 | 1−11.4T+37T2 |
| 41 | 1−4.59T+41T2 |
| 43 | 1+12.6T+43T2 |
| 47 | 1−2.84T+47T2 |
| 53 | 1+1.65T+53T2 |
| 59 | 1−1.06T+59T2 |
| 61 | 1−5.30T+61T2 |
| 67 | 1−0.303T+67T2 |
| 71 | 1−12.4T+71T2 |
| 73 | 1+14.2T+73T2 |
| 79 | 1+1.81T+79T2 |
| 83 | 1−9.16T+83T2 |
| 89 | 1+6.59T+89T2 |
| 97 | 1−8.72T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14214238403987079433163187087, −9.855546284893027412325116176316, −8.704974591706763500573945728239, −8.079307424140824278202677101547, −7.49418691152323461639661794478, −6.22428184642417359821541244566, −4.83842175090924746385875659925, −3.83473079939382034289542235976, −3.05576065421609926345454169925, −0.860472693055647410967144995114,
0.860472693055647410967144995114, 3.05576065421609926345454169925, 3.83473079939382034289542235976, 4.83842175090924746385875659925, 6.22428184642417359821541244566, 7.49418691152323461639661794478, 8.079307424140824278202677101547, 8.704974591706763500573945728239, 9.855546284893027412325116176316, 10.14214238403987079433163187087