Properties

Label 2-627-1.1-c1-0-2
Degree $2$
Conductor $627$
Sign $1$
Analytic cond. $5.00662$
Root an. cond. $2.23754$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.696·2-s + 3-s − 1.51·4-s − 2.51·5-s − 0.696·6-s − 2.32·7-s + 2.44·8-s + 9-s + 1.75·10-s − 11-s − 1.51·12-s + 1.69·13-s + 1.61·14-s − 2.51·15-s + 1.32·16-s + 7.58·17-s − 0.696·18-s − 19-s + 3.81·20-s − 2.32·21-s + 0.696·22-s + 0.248·23-s + 2.44·24-s + 1.32·25-s − 1.18·26-s + 27-s + 3.52·28-s + ⋯
L(s)  = 1  − 0.492·2-s + 0.577·3-s − 0.757·4-s − 1.12·5-s − 0.284·6-s − 0.878·7-s + 0.865·8-s + 0.333·9-s + 0.553·10-s − 0.301·11-s − 0.437·12-s + 0.470·13-s + 0.432·14-s − 0.649·15-s + 0.331·16-s + 1.83·17-s − 0.164·18-s − 0.229·19-s + 0.852·20-s − 0.507·21-s + 0.148·22-s + 0.0518·23-s + 0.499·24-s + 0.265·25-s − 0.231·26-s + 0.192·27-s + 0.665·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(5.00662\)
Root analytic conductor: \(2.23754\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 627,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8537836998\)
\(L(\frac12)\) \(\approx\) \(0.8537836998\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 + T \)
good2 \( 1 + 0.696T + 2T^{2} \)
5 \( 1 + 2.51T + 5T^{2} \)
7 \( 1 + 2.32T + 7T^{2} \)
13 \( 1 - 1.69T + 13T^{2} \)
17 \( 1 - 7.58T + 17T^{2} \)
23 \( 1 - 0.248T + 23T^{2} \)
29 \( 1 - 10.2T + 29T^{2} \)
31 \( 1 - 2.07T + 31T^{2} \)
37 \( 1 - 11.4T + 37T^{2} \)
41 \( 1 - 4.59T + 41T^{2} \)
43 \( 1 + 12.6T + 43T^{2} \)
47 \( 1 - 2.84T + 47T^{2} \)
53 \( 1 + 1.65T + 53T^{2} \)
59 \( 1 - 1.06T + 59T^{2} \)
61 \( 1 - 5.30T + 61T^{2} \)
67 \( 1 - 0.303T + 67T^{2} \)
71 \( 1 - 12.4T + 71T^{2} \)
73 \( 1 + 14.2T + 73T^{2} \)
79 \( 1 + 1.81T + 79T^{2} \)
83 \( 1 - 9.16T + 83T^{2} \)
89 \( 1 + 6.59T + 89T^{2} \)
97 \( 1 - 8.72T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14214238403987079433163187087, −9.855546284893027412325116176316, −8.704974591706763500573945728239, −8.079307424140824278202677101547, −7.49418691152323461639661794478, −6.22428184642417359821541244566, −4.83842175090924746385875659925, −3.83473079939382034289542235976, −3.05576065421609926345454169925, −0.860472693055647410967144995114, 0.860472693055647410967144995114, 3.05576065421609926345454169925, 3.83473079939382034289542235976, 4.83842175090924746385875659925, 6.22428184642417359821541244566, 7.49418691152323461639661794478, 8.079307424140824278202677101547, 8.704974591706763500573945728239, 9.855546284893027412325116176316, 10.14214238403987079433163187087

Graph of the $Z$-function along the critical line