Properties

Label 2-627-1.1-c1-0-30
Degree $2$
Conductor $627$
Sign $-1$
Analytic cond. $5.00662$
Root an. cond. $2.23754$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.24·2-s − 3-s + 3.04·4-s − 4.04·5-s − 2.24·6-s − 1.80·7-s + 2.35·8-s + 9-s − 9.09·10-s − 11-s − 3.04·12-s − 4.13·13-s − 4.04·14-s + 4.04·15-s − 0.801·16-s − 3.35·17-s + 2.24·18-s − 19-s − 12.3·20-s + 1.80·21-s − 2.24·22-s + 7.31·23-s − 2.35·24-s + 11.3·25-s − 9.29·26-s − 27-s − 5.49·28-s + ⋯
L(s)  = 1  + 1.58·2-s − 0.577·3-s + 1.52·4-s − 1.81·5-s − 0.917·6-s − 0.681·7-s + 0.833·8-s + 0.333·9-s − 2.87·10-s − 0.301·11-s − 0.880·12-s − 1.14·13-s − 1.08·14-s + 1.04·15-s − 0.200·16-s − 0.814·17-s + 0.529·18-s − 0.229·19-s − 2.76·20-s + 0.393·21-s − 0.479·22-s + 1.52·23-s − 0.481·24-s + 2.27·25-s − 1.82·26-s − 0.192·27-s − 1.03·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(5.00662\)
Root analytic conductor: \(2.23754\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 627,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 + T \)
19 \( 1 + T \)
good2 \( 1 - 2.24T + 2T^{2} \)
5 \( 1 + 4.04T + 5T^{2} \)
7 \( 1 + 1.80T + 7T^{2} \)
13 \( 1 + 4.13T + 13T^{2} \)
17 \( 1 + 3.35T + 17T^{2} \)
23 \( 1 - 7.31T + 23T^{2} \)
29 \( 1 - 8.00T + 29T^{2} \)
31 \( 1 + 7.51T + 31T^{2} \)
37 \( 1 + 4.50T + 37T^{2} \)
41 \( 1 - 12.0T + 41T^{2} \)
43 \( 1 + 12.4T + 43T^{2} \)
47 \( 1 + 4.02T + 47T^{2} \)
53 \( 1 + 10.6T + 53T^{2} \)
59 \( 1 - 6.51T + 59T^{2} \)
61 \( 1 + 4.66T + 61T^{2} \)
67 \( 1 - 6.80T + 67T^{2} \)
71 \( 1 - 5.03T + 71T^{2} \)
73 \( 1 - 14.2T + 73T^{2} \)
79 \( 1 + 3.13T + 79T^{2} \)
83 \( 1 - 3.82T + 83T^{2} \)
89 \( 1 + 6.99T + 89T^{2} \)
97 \( 1 + 3.25T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78651454765059016202610138905, −9.354676318847034742134288127395, −8.103577223997899842040001601549, −6.98756806927920459087440570584, −6.66335968344755607130141174577, −5.13631363302847026162632205350, −4.64494150598860412244688752899, −3.66273869984981939087818941652, −2.79510487889179487783268245210, 0, 2.79510487889179487783268245210, 3.66273869984981939087818941652, 4.64494150598860412244688752899, 5.13631363302847026162632205350, 6.66335968344755607130141174577, 6.98756806927920459087440570584, 8.103577223997899842040001601549, 9.354676318847034742134288127395, 10.78651454765059016202610138905

Graph of the $Z$-function along the critical line