L(s) = 1 | + (1.74 − 1.26i)2-s + (0.309 + 0.951i)3-s + (0.815 − 2.51i)4-s + (2.24 + 1.63i)5-s + (1.74 + 1.26i)6-s + (−0.940 + 2.89i)7-s + (−0.425 − 1.30i)8-s + (−0.809 + 0.587i)9-s + 5.98·10-s + (0.962 − 3.17i)11-s + 2.63·12-s + (−2.31 + 1.67i)13-s + (2.02 + 6.23i)14-s + (−0.858 + 2.64i)15-s + (1.87 + 1.35i)16-s + (−2.15 − 1.56i)17-s + ⋯ |
L(s) = 1 | + (1.23 − 0.895i)2-s + (0.178 + 0.549i)3-s + (0.407 − 1.25i)4-s + (1.00 + 0.730i)5-s + (0.711 + 0.516i)6-s + (−0.355 + 1.09i)7-s + (−0.150 − 0.462i)8-s + (−0.269 + 0.195i)9-s + 1.89·10-s + (0.290 − 0.956i)11-s + 0.761·12-s + (−0.641 + 0.465i)13-s + (0.541 + 1.66i)14-s + (−0.221 + 0.682i)15-s + (0.467 + 0.339i)16-s + (−0.523 − 0.380i)17-s + ⋯ |
Λ(s)=(=(627s/2ΓC(s)L(s)(0.999+0.00420i)Λ(2−s)
Λ(s)=(=(627s/2ΓC(s+1/2)L(s)(0.999+0.00420i)Λ(1−s)
Degree: |
2 |
Conductor: |
627
= 3⋅11⋅19
|
Sign: |
0.999+0.00420i
|
Analytic conductor: |
5.00662 |
Root analytic conductor: |
2.23754 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ627(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 627, ( :1/2), 0.999+0.00420i)
|
Particular Values
L(1) |
≈ |
3.28892−0.00691895i |
L(21) |
≈ |
3.28892−0.00691895i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.309−0.951i)T |
| 11 | 1+(−0.962+3.17i)T |
| 19 | 1+(−0.309−0.951i)T |
good | 2 | 1+(−1.74+1.26i)T+(0.618−1.90i)T2 |
| 5 | 1+(−2.24−1.63i)T+(1.54+4.75i)T2 |
| 7 | 1+(0.940−2.89i)T+(−5.66−4.11i)T2 |
| 13 | 1+(2.31−1.67i)T+(4.01−12.3i)T2 |
| 17 | 1+(2.15+1.56i)T+(5.25+16.1i)T2 |
| 23 | 1+2.93T+23T2 |
| 29 | 1+(−2.73+8.42i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−8.39+6.09i)T+(9.57−29.4i)T2 |
| 37 | 1+(0.201−0.621i)T+(−29.9−21.7i)T2 |
| 41 | 1+(2.52+7.78i)T+(−33.1+24.0i)T2 |
| 43 | 1+1.85T+43T2 |
| 47 | 1+(−0.0728−0.224i)T+(−38.0+27.6i)T2 |
| 53 | 1+(1.93−1.40i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.795+2.44i)T+(−47.7−34.6i)T2 |
| 61 | 1+(7.22+5.25i)T+(18.8+58.0i)T2 |
| 67 | 1+2.05T+67T2 |
| 71 | 1+(3.74+2.72i)T+(21.9+67.5i)T2 |
| 73 | 1+(1.02−3.16i)T+(−59.0−42.9i)T2 |
| 79 | 1+(8.83−6.42i)T+(24.4−75.1i)T2 |
| 83 | 1+(−14.5−10.5i)T+(25.6+78.9i)T2 |
| 89 | 1−7.08T+89T2 |
| 97 | 1+(−0.559+0.406i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69362867878529367308180425293, −9.936352117185017180098338115916, −9.266462210257740234085157046241, −8.148452662356928908024549773359, −6.33367904138413958422803504627, −5.97026841821169584695860226403, −4.94200732217966189916115490734, −3.85352617606113868172911663670, −2.67176620687367197479850348063, −2.28869101492042807502503311655,
1.43037219315938329934581910749, 3.07188823499603041648821718627, 4.43392082079960876145752504282, 5.02788637576789611220590079419, 6.17010485295901101487300800194, 6.83710805283468452390938076365, 7.52273873835406857029024069148, 8.651848115478939008919826406440, 9.808252545897061492540757248343, 10.38589828303980747014883459873