L(s) = 1 | + 2.87i·2-s + (−2.93 + 0.599i)3-s − 4.24·4-s + (−6.53 − 3.77i)5-s + (−1.72 − 8.44i)6-s + (2.05 + 6.69i)7-s − 0.709i·8-s + (8.28 − 3.52i)9-s + (10.8 − 18.7i)10-s + (−13.1 + 7.59i)11-s + (12.4 − 2.54i)12-s + (4.30 + 7.45i)13-s + (−19.2 + 5.90i)14-s + (21.4 + 7.17i)15-s − 14.9·16-s + (−4.60 − 2.66i)17-s + ⋯ |
L(s) = 1 | + 1.43i·2-s + (−0.979 + 0.199i)3-s − 1.06·4-s + (−1.30 − 0.754i)5-s + (−0.286 − 1.40i)6-s + (0.293 + 0.955i)7-s − 0.0886i·8-s + (0.920 − 0.391i)9-s + (1.08 − 1.87i)10-s + (−1.19 + 0.690i)11-s + (1.04 − 0.212i)12-s + (0.331 + 0.573i)13-s + (−1.37 + 0.421i)14-s + (1.43 + 0.478i)15-s − 0.934·16-s + (−0.271 − 0.156i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.446i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.894 + 0.446i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.114141 - 0.484698i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.114141 - 0.484698i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.93 - 0.599i)T \) |
| 7 | \( 1 + (-2.05 - 6.69i)T \) |
good | 2 | \( 1 - 2.87iT - 4T^{2} \) |
| 5 | \( 1 + (6.53 + 3.77i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (13.1 - 7.59i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-4.30 - 7.45i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (4.60 + 2.66i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (0.417 + 0.722i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-33.8 - 19.5i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-12.5 - 7.25i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 - 12.7T + 961T^{2} \) |
| 37 | \( 1 + (11.7 + 20.3i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (13.4 - 7.75i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-0.448 + 0.776i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 - 2.35iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (31.4 + 18.1i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 - 48.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 29.6T + 3.72e3T^{2} \) |
| 67 | \( 1 - 92.5T + 4.48e3T^{2} \) |
| 71 | \( 1 + 15.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (46.8 - 81.0i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + 82.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-127. - 73.3i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (-92.3 + 53.2i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (26.0 - 45.0i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.69542239603633568335693625305, −14.96606081085873893862400389288, −13.08049999204700168644113594754, −12.01594526519611641049095567181, −11.10915189497396338730719081552, −9.129382956516028007732193436454, −8.010580484355659562348967519937, −6.94971681062098608054258948714, −5.37419393783963400787342576645, −4.64817414435236099893798663826,
0.52148987682429679346737572832, 3.22424197911385682344932574576, 4.63549392031665671306821864464, 6.83515382450712050301286010330, 8.049431440468640334504178840223, 10.41371990197610202879685720993, 10.81727664390609053434988370964, 11.48973538947100087706282722076, 12.64775426213615962049255522311, 13.54404591655057303220448707059