L(s) = 1 | + (−0.335 − 0.580i)2-s + (−0.377 + 1.69i)3-s + (0.775 − 1.34i)4-s + 1.42·5-s + (1.10 − 0.347i)6-s + (2.21 + 1.44i)7-s − 2.38·8-s + (−2.71 − 1.27i)9-s + (−0.477 − 0.827i)10-s − 4.93·11-s + (1.97 + 1.81i)12-s + (−1.37 − 2.38i)13-s + (0.0972 − 1.77i)14-s + (−0.537 + 2.40i)15-s + (−0.752 − 1.30i)16-s + (0.559 + 0.969i)17-s + ⋯ |
L(s) = 1 | + (−0.236 − 0.410i)2-s + (−0.217 + 0.975i)3-s + (0.387 − 0.671i)4-s + 0.637·5-s + (0.452 − 0.141i)6-s + (0.837 + 0.546i)7-s − 0.841·8-s + (−0.905 − 0.425i)9-s + (−0.151 − 0.261i)10-s − 1.48·11-s + (0.570 + 0.524i)12-s + (−0.381 − 0.661i)13-s + (0.0259 − 0.473i)14-s + (−0.138 + 0.621i)15-s + (−0.188 − 0.326i)16-s + (0.135 + 0.235i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0815i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.845532 - 0.0345271i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.845532 - 0.0345271i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.377 - 1.69i)T \) |
| 7 | \( 1 + (-2.21 - 1.44i)T \) |
good | 2 | \( 1 + (0.335 + 0.580i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 1.42T + 5T^{2} \) |
| 11 | \( 1 + 4.93T + 11T^{2} \) |
| 13 | \( 1 + (1.37 + 2.38i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.559 - 0.969i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.00 - 3.47i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 5.43T + 23T^{2} \) |
| 29 | \( 1 + (-3.40 + 5.89i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.25 - 2.17i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.709 + 1.22i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.124 - 0.215i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.498 - 0.863i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.73 - 8.20i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.410 + 0.710i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.29 + 5.70i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0376 + 0.0651i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.29 + 10.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.0804T + 71T^{2} \) |
| 73 | \( 1 + (-5.34 - 9.25i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.922 - 1.59i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (7.23 - 12.5i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.76 + 11.7i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.70 + 4.67i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.15220572324695818656001059970, −14.17379468297214502677178870637, −12.50901304462440725403087225598, −11.18016019411116836439550005621, −10.43512906466667548914009454451, −9.595433739461642443887281324057, −8.179445350993106075371674004931, −5.88249907646017099821222604099, −5.09911585727316482119125511722, −2.55410182050563309062851569300,
2.43276306555582225040876355560, 5.23491954184880197744602844310, 6.83534364245412976352260609106, 7.64492662535632723445952402770, 8.759029338414712789645250969721, 10.67025941076567510576401190927, 11.69984246674261101499035914297, 12.92015519761970628177184036033, 13.69176548065970242328307141540, 14.98446795700252637283799713248