L(s) = 1 | + (−0.335 − 0.580i)2-s + (−0.377 + 1.69i)3-s + (0.775 − 1.34i)4-s + 1.42·5-s + (1.10 − 0.347i)6-s + (2.21 + 1.44i)7-s − 2.38·8-s + (−2.71 − 1.27i)9-s + (−0.477 − 0.827i)10-s − 4.93·11-s + (1.97 + 1.81i)12-s + (−1.37 − 2.38i)13-s + (0.0972 − 1.77i)14-s + (−0.537 + 2.40i)15-s + (−0.752 − 1.30i)16-s + (0.559 + 0.969i)17-s + ⋯ |
L(s) = 1 | + (−0.236 − 0.410i)2-s + (−0.217 + 0.975i)3-s + (0.387 − 0.671i)4-s + 0.637·5-s + (0.452 − 0.141i)6-s + (0.837 + 0.546i)7-s − 0.841·8-s + (−0.905 − 0.425i)9-s + (−0.151 − 0.261i)10-s − 1.48·11-s + (0.570 + 0.524i)12-s + (−0.381 − 0.661i)13-s + (0.0259 − 0.473i)14-s + (−0.138 + 0.621i)15-s + (−0.188 − 0.326i)16-s + (0.135 + 0.235i)17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.996+0.0815i)Λ(2−s)
Λ(s)=(=(63s/2ΓC(s+1/2)L(s)(0.996+0.0815i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.996+0.0815i
|
Analytic conductor: |
0.503057 |
Root analytic conductor: |
0.709265 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :1/2), 0.996+0.0815i)
|
Particular Values
L(1) |
≈ |
0.845532−0.0345271i |
L(21) |
≈ |
0.845532−0.0345271i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.377−1.69i)T |
| 7 | 1+(−2.21−1.44i)T |
good | 2 | 1+(0.335+0.580i)T+(−1+1.73i)T2 |
| 5 | 1−1.42T+5T2 |
| 11 | 1+4.93T+11T2 |
| 13 | 1+(1.37+2.38i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.559−0.969i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.00−3.47i)T+(−9.5−16.4i)T2 |
| 23 | 1−5.43T+23T2 |
| 29 | 1+(−3.40+5.89i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.25−2.17i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.709+1.22i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−0.124−0.215i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.498−0.863i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−4.73−8.20i)T+(−23.5+40.7i)T2 |
| 53 | 1+(0.410+0.710i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3.29+5.70i)T+(−29.5−51.0i)T2 |
| 61 | 1+(0.0376+0.0651i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.29+10.9i)T+(−33.5−58.0i)T2 |
| 71 | 1−0.0804T+71T2 |
| 73 | 1+(−5.34−9.25i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.922−1.59i)T+(−39.5+68.4i)T2 |
| 83 | 1+(7.23−12.5i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−6.76+11.7i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−2.70+4.67i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.15220572324695818656001059970, −14.17379468297214502677178870637, −12.50901304462440725403087225598, −11.18016019411116836439550005621, −10.43512906466667548914009454451, −9.595433739461642443887281324057, −8.179445350993106075371674004931, −5.88249907646017099821222604099, −5.09911585727316482119125511722, −2.55410182050563309062851569300,
2.43276306555582225040876355560, 5.23491954184880197744602844310, 6.83534364245412976352260609106, 7.64492662535632723445952402770, 8.759029338414712789645250969721, 10.67025941076567510576401190927, 11.69984246674261101499035914297, 12.92015519761970628177184036033, 13.69176548065970242328307141540, 14.98446795700252637283799713248