L(s) = 1 | + (0.247 + 0.429i)2-s + (1.59 + 0.667i)3-s + (0.877 − 1.51i)4-s − 3.69·5-s + (0.109 + 0.851i)6-s + (−2.60 + 0.436i)7-s + 1.86·8-s + (2.10 + 2.13i)9-s + (−0.915 − 1.58i)10-s − 0.892·11-s + (2.41 − 1.84i)12-s + (0.598 + 1.03i)13-s + (−0.834 − 1.01i)14-s + (−5.90 − 2.46i)15-s + (−1.29 − 2.23i)16-s + (−0.124 − 0.216i)17-s + ⋯ |
L(s) = 1 | + (0.175 + 0.303i)2-s + (0.922 + 0.385i)3-s + (0.438 − 0.759i)4-s − 1.65·5-s + (0.0447 + 0.347i)6-s + (−0.986 + 0.165i)7-s + 0.658·8-s + (0.703 + 0.711i)9-s + (−0.289 − 0.501i)10-s − 0.269·11-s + (0.697 − 0.531i)12-s + (0.165 + 0.287i)13-s + (−0.223 − 0.270i)14-s + (−1.52 − 0.636i)15-s + (−0.323 − 0.559i)16-s + (−0.0303 − 0.0525i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 - 0.305i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.952 - 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03543 + 0.162240i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03543 + 0.162240i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.59 - 0.667i)T \) |
| 7 | \( 1 + (2.60 - 0.436i)T \) |
good | 2 | \( 1 + (-0.247 - 0.429i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 3.69T + 5T^{2} \) |
| 11 | \( 1 + 0.892T + 11T^{2} \) |
| 13 | \( 1 + (-0.598 - 1.03i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.124 + 0.216i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.40 + 2.43i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2.47T + 23T^{2} \) |
| 29 | \( 1 + (-2.07 + 3.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.79 - 3.10i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.36 - 4.09i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.39 + 4.14i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.98 - 8.64i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.08 - 8.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.94 + 8.56i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.906 - 1.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.40 + 9.35i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.514 - 0.891i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.94T + 71T^{2} \) |
| 73 | \( 1 + (0.915 + 1.58i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.899 - 1.55i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.16 + 10.6i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.20 - 2.08i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.52 + 9.56i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.36374647682216774783981975161, −14.23110221078769250069484115764, −13.00143081791790352057865498478, −11.59538544729436281647533088022, −10.45038206493668952876901249079, −9.181859333322193367524753569343, −7.82626774341330363998532330537, −6.76207320829782240910166171102, −4.69361569029221378036544158127, −3.18472969879382765145417708865,
3.10381783861810109463998122876, 3.93268315212982890138218541249, 6.97062221906745207652555839037, 7.72962561025683482540443523625, 8.771645737371555928118105047042, 10.54863121386110223888548405422, 11.94500405629316739096696827882, 12.58868957808806882832052972310, 13.55943510190503932811052544512, 15.13278466354339477210126506384