L(s) = 1 | + (0.247 + 0.429i)2-s + (1.59 + 0.667i)3-s + (0.877 − 1.51i)4-s − 3.69·5-s + (0.109 + 0.851i)6-s + (−2.60 + 0.436i)7-s + 1.86·8-s + (2.10 + 2.13i)9-s + (−0.915 − 1.58i)10-s − 0.892·11-s + (2.41 − 1.84i)12-s + (0.598 + 1.03i)13-s + (−0.834 − 1.01i)14-s + (−5.90 − 2.46i)15-s + (−1.29 − 2.23i)16-s + (−0.124 − 0.216i)17-s + ⋯ |
L(s) = 1 | + (0.175 + 0.303i)2-s + (0.922 + 0.385i)3-s + (0.438 − 0.759i)4-s − 1.65·5-s + (0.0447 + 0.347i)6-s + (−0.986 + 0.165i)7-s + 0.658·8-s + (0.703 + 0.711i)9-s + (−0.289 − 0.501i)10-s − 0.269·11-s + (0.697 − 0.531i)12-s + (0.165 + 0.287i)13-s + (−0.223 − 0.270i)14-s + (−1.52 − 0.636i)15-s + (−0.323 − 0.559i)16-s + (−0.0303 − 0.0525i)17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.952−0.305i)Λ(2−s)
Λ(s)=(=(63s/2ΓC(s+1/2)L(s)(0.952−0.305i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.952−0.305i
|
Analytic conductor: |
0.503057 |
Root analytic conductor: |
0.709265 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :1/2), 0.952−0.305i)
|
Particular Values
L(1) |
≈ |
1.03543+0.162240i |
L(21) |
≈ |
1.03543+0.162240i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.59−0.667i)T |
| 7 | 1+(2.60−0.436i)T |
good | 2 | 1+(−0.247−0.429i)T+(−1+1.73i)T2 |
| 5 | 1+3.69T+5T2 |
| 11 | 1+0.892T+11T2 |
| 13 | 1+(−0.598−1.03i)T+(−6.5+11.2i)T2 |
| 17 | 1+(0.124+0.216i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.40+2.43i)T+(−9.5−16.4i)T2 |
| 23 | 1−2.47T+23T2 |
| 29 | 1+(−2.07+3.58i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.79−3.10i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.36−4.09i)T+(−18.5−32.0i)T2 |
| 41 | 1+(2.39+4.14i)T+(−20.5+35.5i)T2 |
| 43 | 1+(4.98−8.64i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−5.08−8.81i)T+(−23.5+40.7i)T2 |
| 53 | 1+(4.94+8.56i)T+(−26.5+45.8i)T2 |
| 59 | 1+(0.906−1.56i)T+(−29.5−51.0i)T2 |
| 61 | 1+(5.40+9.35i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.514−0.891i)T+(−33.5−58.0i)T2 |
| 71 | 1+4.94T+71T2 |
| 73 | 1+(0.915+1.58i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.899−1.55i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−6.16+10.6i)T+(−41.5−71.8i)T2 |
| 89 | 1+(1.20−2.08i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−5.52+9.56i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.36374647682216774783981975161, −14.23110221078769250069484115764, −13.00143081791790352057865498478, −11.59538544729436281647533088022, −10.45038206493668952876901249079, −9.181859333322193367524753569343, −7.82626774341330363998532330537, −6.76207320829782240910166171102, −4.69361569029221378036544158127, −3.18472969879382765145417708865,
3.10381783861810109463998122876, 3.93268315212982890138218541249, 6.97062221906745207652555839037, 7.72962561025683482540443523625, 8.771645737371555928118105047042, 10.54863121386110223888548405422, 11.94500405629316739096696827882, 12.58868957808806882832052972310, 13.55943510190503932811052544512, 15.13278466354339477210126506384