L(s) = 1 | + (−1.97 − 1.13i)2-s + (0.578 − 1.63i)3-s + (1.59 + 2.75i)4-s + (−0.717 − 1.24i)5-s + (−2.99 + 2.55i)6-s + (−2.40 − 1.11i)7-s − 2.69i·8-s + (−2.33 − 1.88i)9-s + 3.26i·10-s + (2.80 + 1.61i)11-s + (5.41 − 1.00i)12-s + (4.43 − 2.55i)13-s + (3.47 + 4.92i)14-s + (−2.44 + 0.451i)15-s + (0.119 − 0.207i)16-s + 1.09·17-s + ⋯ |
L(s) = 1 | + (−1.39 − 0.804i)2-s + (0.334 − 0.942i)3-s + (0.795 + 1.37i)4-s + (−0.320 − 0.555i)5-s + (−1.22 + 1.04i)6-s + (−0.907 − 0.419i)7-s − 0.951i·8-s + (−0.776 − 0.629i)9-s + 1.03i·10-s + (0.844 + 0.487i)11-s + (1.56 − 0.289i)12-s + (1.22 − 0.709i)13-s + (0.927 + 1.31i)14-s + (−0.630 + 0.116i)15-s + (0.0298 − 0.0517i)16-s + 0.264·17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.692+0.721i)Λ(2−s)
Λ(s)=(=(63s/2ΓC(s+1/2)L(s)(−0.692+0.721i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.692+0.721i
|
Analytic conductor: |
0.503057 |
Root analytic conductor: |
0.709265 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(20,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :1/2), −0.692+0.721i)
|
Particular Values
L(1) |
≈ |
0.186541−0.437924i |
L(21) |
≈ |
0.186541−0.437924i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.578+1.63i)T |
| 7 | 1+(2.40+1.11i)T |
good | 2 | 1+(1.97+1.13i)T+(1+1.73i)T2 |
| 5 | 1+(0.717+1.24i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2.80−1.61i)T+(5.5+9.52i)T2 |
| 13 | 1+(−4.43+2.55i)T+(6.5−11.2i)T2 |
| 17 | 1−1.09T+17T2 |
| 19 | 1−4.48iT−19T2 |
| 23 | 1+(−3.47+2.00i)T+(11.5−19.9i)T2 |
| 29 | 1+(−1.02−0.593i)T+(14.5+25.1i)T2 |
| 31 | 1+(3.24−1.87i)T+(15.5−26.8i)T2 |
| 37 | 1+0.239T+37T2 |
| 41 | 1+(−3.71−6.43i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.82−6.62i)T+(−21.5−37.2i)T2 |
| 47 | 1+(2.11−3.65i)T+(−23.5−40.7i)T2 |
| 53 | 1+7.01iT−53T2 |
| 59 | 1+(4.73+8.20i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.82+1.63i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.330+0.571i)T+(−33.5+58.0i)T2 |
| 71 | 1+3.82iT−71T2 |
| 73 | 1−7.31iT−73T2 |
| 79 | 1+(1.83−3.16i)T+(−39.5−68.4i)T2 |
| 83 | 1+(5.45−9.44i)T+(−41.5−71.8i)T2 |
| 89 | 1−13.6T+89T2 |
| 97 | 1+(−2.69−1.55i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.43774371613803619824094158064, −12.94297198642855350628004629658, −12.31681668555976572621189403781, −11.09589945699888816021294856616, −9.788409594005608981836469380657, −8.740360628311118463668635822796, −7.85615946311581143094563245081, −6.46436863352392689320904694421, −3.34091255397121325083077074527, −1.16972861696127013472767891170,
3.53786021103306902518950838853, 6.00566203157387147764646895058, 7.16224305504598902343677629083, 8.894644153988514565837566317656, 9.117169602911260789621143059951, 10.50808529411448498470970372816, 11.43418172654709211579379068554, 13.57302218270449218147251419517, 14.91724853030596000616581729866, 15.64183342901212976672163941506