L(s) = 1 | + (1.37 + 2.37i)2-s + (12.2 − 21.1i)4-s + (29.1 + 50.5i)5-s + (−21.4 − 127. i)7-s + 155.·8-s + (−80.2 + 138. i)10-s + (8.71 − 15.0i)11-s + 889.·13-s + (274. − 226. i)14-s + (−178. − 308. i)16-s + (513. − 889. i)17-s + (869. + 1.50e3i)19-s + 1.42e3·20-s + 47.8·22-s + (1.96e3 + 3.40e3i)23-s + ⋯ |
L(s) = 1 | + (0.242 + 0.420i)2-s + (0.381 − 0.661i)4-s + (0.522 + 0.904i)5-s + (−0.165 − 0.986i)7-s + 0.856·8-s + (−0.253 + 0.439i)10-s + (0.0217 − 0.0376i)11-s + 1.46·13-s + (0.374 − 0.309i)14-s + (−0.173 − 0.301i)16-s + (0.430 − 0.746i)17-s + (0.552 + 0.957i)19-s + 0.797·20-s + 0.0210·22-s + (0.775 + 1.34i)23-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.994−0.102i)Λ(6−s)
Λ(s)=(=(63s/2ΓC(s+5/2)L(s)(0.994−0.102i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.994−0.102i
|
Analytic conductor: |
10.1041 |
Root analytic conductor: |
3.17870 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(46,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :5/2), 0.994−0.102i)
|
Particular Values
L(3) |
≈ |
2.47001+0.126996i |
L(21) |
≈ |
2.47001+0.126996i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(21.4+127.i)T |
good | 2 | 1+(−1.37−2.37i)T+(−16+27.7i)T2 |
| 5 | 1+(−29.1−50.5i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(−8.71+15.0i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−889.T+3.71e5T2 |
| 17 | 1+(−513.+889.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−869.−1.50e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−1.96e3−3.40e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+5.63e3T+2.05e7T2 |
| 31 | 1+(−1.54e3+2.68e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(2.51e3+4.35e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+1.83e4T+1.15e8T2 |
| 43 | 1+1.63e3T+1.47e8T2 |
| 47 | 1+(4.80e3+8.31e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(1.16e4−2.01e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(1.80e3−3.12e3i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(1.14e4+1.98e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(2.35e4−4.07e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1−1.59e3T+1.80e9T2 |
| 73 | 1+(2.96e3−5.13e3i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−4.42e4−7.66e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−9.58e4T+3.93e9T2 |
| 89 | 1+(2.32e4+4.02e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+7.59e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.91921655509214965507532250650, −13.48963636943716245794381606601, −11.39999928392880380861640886849, −10.57791415580590568498951403150, −9.644740063336668464470147278693, −7.58263478147098886454878801947, −6.60440072420327010918554362523, −5.51930212590954880588010106326, −3.51283288971617070275976505547, −1.38095645184881750988500101384,
1.60100842539679883761423261546, 3.25916490878785512029035979922, 5.02018787831344439120887918505, 6.46680667916689134201252454535, 8.302501559144770194127863087550, 9.105021111815970588157067465406, 10.76557484746689654554130852349, 11.88228823810789006660822442664, 12.85690485658925676281368137808, 13.44745199180996289892886574073