L(s) = 1 | + (15.9 + 27.5i)2-s + (−250. + 434. i)4-s + (502. + 870. i)5-s + (3.10e3 − 5.54e3i)7-s + 332.·8-s + (−1.60e4 + 2.77e4i)10-s + (−3.79e4 + 6.57e4i)11-s + 1.66e5·13-s + (2.02e5 − 2.70e3i)14-s + (1.33e5 + 2.31e5i)16-s + (−2.17e5 + 3.76e5i)17-s + (−2.24e5 − 3.88e5i)19-s − 5.04e5·20-s − 2.41e6·22-s + (8.21e5 + 1.42e6i)23-s + ⋯ |
L(s) = 1 | + (0.703 + 1.21i)2-s + (−0.489 + 0.848i)4-s + (0.359 + 0.622i)5-s + (0.488 − 0.872i)7-s + 0.0286·8-s + (−0.505 + 0.876i)10-s + (−0.781 + 1.35i)11-s + 1.61·13-s + (1.40 − 0.0188i)14-s + (0.509 + 0.883i)16-s + (−0.630 + 1.09i)17-s + (−0.395 − 0.684i)19-s − 0.704·20-s − 2.19·22-s + (0.611 + 1.05i)23-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.839−0.542i)Λ(10−s)
Λ(s)=(=(63s/2ΓC(s+9/2)L(s)(−0.839−0.542i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.839−0.542i
|
Analytic conductor: |
32.4472 |
Root analytic conductor: |
5.69624 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(46,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :9/2), −0.839−0.542i)
|
Particular Values
L(5) |
≈ |
0.933940+3.16666i |
L(21) |
≈ |
0.933940+3.16666i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−3.10e3+5.54e3i)T |
good | 2 | 1+(−15.9−27.5i)T+(−256+443.i)T2 |
| 5 | 1+(−502.−870.i)T+(−9.76e5+1.69e6i)T2 |
| 11 | 1+(3.79e4−6.57e4i)T+(−1.17e9−2.04e9i)T2 |
| 13 | 1−1.66e5T+1.06e10T2 |
| 17 | 1+(2.17e5−3.76e5i)T+(−5.92e10−1.02e11i)T2 |
| 19 | 1+(2.24e5+3.88e5i)T+(−1.61e11+2.79e11i)T2 |
| 23 | 1+(−8.21e5−1.42e6i)T+(−9.00e11+1.55e12i)T2 |
| 29 | 1+3.82e6T+1.45e13T2 |
| 31 | 1+(8.39e5−1.45e6i)T+(−1.32e13−2.28e13i)T2 |
| 37 | 1+(−6.88e6−1.19e7i)T+(−6.49e13+1.12e14i)T2 |
| 41 | 1−6.02e5T+3.27e14T2 |
| 43 | 1+2.34e7T+5.02e14T2 |
| 47 | 1+(2.08e7+3.60e7i)T+(−5.59e14+9.69e14i)T2 |
| 53 | 1+(−2.05e7+3.56e7i)T+(−1.64e15−2.85e15i)T2 |
| 59 | 1+(2.32e7−4.02e7i)T+(−4.33e15−7.50e15i)T2 |
| 61 | 1+(−8.99e7−1.55e8i)T+(−5.84e15+1.01e16i)T2 |
| 67 | 1+(5.56e7−9.64e7i)T+(−1.36e16−2.35e16i)T2 |
| 71 | 1−1.92e8T+4.58e16T2 |
| 73 | 1+(−1.82e8+3.15e8i)T+(−2.94e16−5.09e16i)T2 |
| 79 | 1+(1.68e7+2.91e7i)T+(−5.99e16+1.03e17i)T2 |
| 83 | 1−2.52e8T+1.86e17T2 |
| 89 | 1+(−3.67e8−6.36e8i)T+(−1.75e17+3.03e17i)T2 |
| 97 | 1−4.21e7T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.44656248308386126169982232715, −13.20039002419987091871272267701, −11.08091130188965020733351616324, −10.26395274386050082295087375991, −8.362329008578001792239879050499, −7.21311771133954201314193209687, −6.39525127900641999893699542652, −5.01107509621570934476162553667, −3.84256189941213004713636059086, −1.69671932003328070679797297740,
0.827268061713329168778232990168, 2.13742216108495019076655249125, 3.38913231559792340693660649800, 4.91714410669609246312389915181, 5.90575903508278056654561598570, 8.223143016077723730318800795078, 9.196420082102448773836500861854, 10.93573672708974484779153768621, 11.30628062566132135547380333762, 12.74181451523957222780400473078