Properties

Label 2-630-105.104-c1-0-0
Degree 22
Conductor 630630
Sign 0.9500.309i-0.950 - 0.309i
Analytic cond. 5.030575.03057
Root an. cond. 2.242892.24289
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2.23i·5-s + (−1.58 − 2.12i)7-s − 8-s − 2.23i·10-s + 1.41i·11-s − 3.16·13-s + (1.58 + 2.12i)14-s + 16-s + 4.47i·17-s + 2.23i·20-s − 1.41i·22-s − 6·23-s − 5.00·25-s + 3.16·26-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.999i·5-s + (−0.597 − 0.801i)7-s − 0.353·8-s − 0.707i·10-s + 0.426i·11-s − 0.877·13-s + (0.422 + 0.566i)14-s + 0.250·16-s + 1.08i·17-s + 0.499i·20-s − 0.301i·22-s − 1.25·23-s − 1.00·25-s + 0.620·26-s + ⋯

Functional equation

Λ(s)=(630s/2ΓC(s)L(s)=((0.9500.309i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.950 - 0.309i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(630s/2ΓC(s+1/2)L(s)=((0.9500.309i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.950 - 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 630630    =    232572 \cdot 3^{2} \cdot 5 \cdot 7
Sign: 0.9500.309i-0.950 - 0.309i
Analytic conductor: 5.030575.03057
Root analytic conductor: 2.242892.24289
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ630(629,)\chi_{630} (629, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 630, ( :1/2), 0.9500.309i)(2,\ 630,\ (\ :1/2),\ -0.950 - 0.309i)

Particular Values

L(1)L(1) \approx 0.0477062+0.300587i0.0477062 + 0.300587i
L(12)L(\frac12) \approx 0.0477062+0.300587i0.0477062 + 0.300587i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+T 1 + T
3 1 1
5 12.23iT 1 - 2.23iT
7 1+(1.58+2.12i)T 1 + (1.58 + 2.12i)T
good11 11.41iT11T2 1 - 1.41iT - 11T^{2}
13 1+3.16T+13T2 1 + 3.16T + 13T^{2}
17 14.47iT17T2 1 - 4.47iT - 17T^{2}
19 119T2 1 - 19T^{2}
23 1+6T+23T2 1 + 6T + 23T^{2}
29 1+2.82iT29T2 1 + 2.82iT - 29T^{2}
31 131T2 1 - 31T^{2}
37 14.24iT37T2 1 - 4.24iT - 37T^{2}
41 1+9.48T+41T2 1 + 9.48T + 41T^{2}
43 1+8.48iT43T2 1 + 8.48iT - 43T^{2}
47 14.47iT47T2 1 - 4.47iT - 47T^{2}
53 1+6T+53T2 1 + 6T + 53T^{2}
59 1+9.48T+59T2 1 + 9.48T + 59T^{2}
61 113.4iT61T2 1 - 13.4iT - 61T^{2}
67 167T2 1 - 67T^{2}
71 15.65iT71T2 1 - 5.65iT - 71T^{2}
73 16.32T+73T2 1 - 6.32T + 73T^{2}
79 1+4T+79T2 1 + 4T + 79T^{2}
83 1+8.94iT83T2 1 + 8.94iT - 83T^{2}
89 19.48T+89T2 1 - 9.48T + 89T^{2}
97 1+12.6T+97T2 1 + 12.6T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.58146408842394759270215540037, −10.18820040222772632869534083371, −9.547200219348599132115564211142, −8.228961192136410297657798424676, −7.44153617178046510531622099232, −6.73728729498086499537741807549, −5.92446901953642313495905722234, −4.26972965883368255345978709413, −3.20522168714599649698801888938, −1.95025151170830758376888678804, 0.19368696061180433611090506274, 1.97519398733150736980715138839, 3.23798081802239431159607169592, 4.79638243058840551939310776857, 5.67451495033424106054574451189, 6.67689601304879097051879654202, 7.81821112938596264518928243751, 8.538780949948116020498419233732, 9.489765687736881830070967946987, 9.739535368163759787081607187671

Graph of the ZZ-function along the critical line