L(s) = 1 | − 2-s + 4-s − 2.23i·5-s + (1.58 − 2.12i)7-s − 8-s + 2.23i·10-s + 1.41i·11-s + 3.16·13-s + (−1.58 + 2.12i)14-s + 16-s − 4.47i·17-s − 2.23i·20-s − 1.41i·22-s − 6·23-s − 5.00·25-s − 3.16·26-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.999i·5-s + (0.597 − 0.801i)7-s − 0.353·8-s + 0.707i·10-s + 0.426i·11-s + 0.877·13-s + (−0.422 + 0.566i)14-s + 0.250·16-s − 1.08i·17-s − 0.499i·20-s − 0.301i·22-s − 1.25·23-s − 1.00·25-s − 0.620·26-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(−0.0250+0.999i)Λ(2−s)
Λ(s)=(=(630s/2ΓC(s+1/2)L(s)(−0.0250+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
−0.0250+0.999i
|
Analytic conductor: |
5.03057 |
Root analytic conductor: |
2.24289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(629,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :1/2), −0.0250+0.999i)
|
Particular Values
L(1) |
≈ |
0.734716−0.753349i |
L(21) |
≈ |
0.734716−0.753349i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1+2.23iT |
| 7 | 1+(−1.58+2.12i)T |
good | 11 | 1−1.41iT−11T2 |
| 13 | 1−3.16T+13T2 |
| 17 | 1+4.47iT−17T2 |
| 19 | 1−19T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+2.82iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1−4.24iT−37T2 |
| 41 | 1−9.48T+41T2 |
| 43 | 1+8.48iT−43T2 |
| 47 | 1+4.47iT−47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1−9.48T+59T2 |
| 61 | 1+13.4iT−61T2 |
| 67 | 1−67T2 |
| 71 | 1−5.65iT−71T2 |
| 73 | 1+6.32T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−8.94iT−83T2 |
| 89 | 1+9.48T+89T2 |
| 97 | 1−12.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19019245128368008615632834623, −9.531236690328958957651902900364, −8.558511955016878264934298298333, −7.925117932707761620388852170211, −7.06977408034962942604364076625, −5.87469206114132527698504709593, −4.77625879851704816360809095817, −3.81808402610915940952594381156, −2.00033142574844190443925101690, −0.75552635560664395036088032976,
1.69990310217715932319361391860, 2.87145376950628508980656054161, 4.07690455696665579503348347992, 5.84316538225360915818631842009, 6.20168260108870078040702839289, 7.50703467499020019248506410240, 8.231401445990579585561071686273, 8.981022815354623021280794898161, 10.02241672483821613225587595146, 10.86960207532378637024513611208