L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (−2.22 + 0.227i)5-s + (1.18 − 2.36i)7-s + (−0.707 − 0.707i)8-s + (−0.795 − 2.08i)10-s + (1.10 − 0.636i)11-s + (2.15 − 2.15i)13-s + (2.59 + 0.537i)14-s + (0.500 − 0.866i)16-s + (5.80 + 1.55i)17-s + (6.20 + 3.58i)19-s + (1.81 − 1.30i)20-s + (0.900 + 0.900i)22-s + (−4.14 + 1.11i)23-s + ⋯ |
L(s) = 1 | + (0.183 + 0.683i)2-s + (−0.433 + 0.249i)4-s + (−0.994 + 0.101i)5-s + (0.449 − 0.893i)7-s + (−0.249 − 0.249i)8-s + (−0.251 − 0.660i)10-s + (0.332 − 0.191i)11-s + (0.596 − 0.596i)13-s + (0.692 + 0.143i)14-s + (0.125 − 0.216i)16-s + (1.40 + 0.376i)17-s + (1.42 + 0.822i)19-s + (0.405 − 0.292i)20-s + (0.191 + 0.191i)22-s + (−0.864 + 0.231i)23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.912−0.409i)Λ(2−s)
Λ(s)=(=(630s/2ΓC(s+1/2)L(s)(0.912−0.409i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.912−0.409i
|
Analytic conductor: |
5.03057 |
Root analytic conductor: |
2.24289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :1/2), 0.912−0.409i)
|
Particular Values
L(1) |
≈ |
1.42187+0.304809i |
L(21) |
≈ |
1.42187+0.304809i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258−0.965i)T |
| 3 | 1 |
| 5 | 1+(2.22−0.227i)T |
| 7 | 1+(−1.18+2.36i)T |
good | 11 | 1+(−1.10+0.636i)T+(5.5−9.52i)T2 |
| 13 | 1+(−2.15+2.15i)T−13iT2 |
| 17 | 1+(−5.80−1.55i)T+(14.7+8.5i)T2 |
| 19 | 1+(−6.20−3.58i)T+(9.5+16.4i)T2 |
| 23 | 1+(4.14−1.11i)T+(19.9−11.5i)T2 |
| 29 | 1−1.25T+29T2 |
| 31 | 1+(2.35+4.08i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.99−0.535i)T+(32.0−18.5i)T2 |
| 41 | 1+0.655iT−41T2 |
| 43 | 1+(−7.20+7.20i)T−43iT2 |
| 47 | 1+(−2.80−10.4i)T+(−40.7+23.5i)T2 |
| 53 | 1+(−3.55+13.2i)T+(−45.8−26.5i)T2 |
| 59 | 1+(−0.688−1.19i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.57−4.46i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.12+4.19i)T+(−58.0−33.5i)T2 |
| 71 | 1−0.159iT−71T2 |
| 73 | 1+(−9.90−2.65i)T+(63.2+36.5i)T2 |
| 79 | 1+(9.23+5.33i)T+(39.5+68.4i)T2 |
| 83 | 1+(6.09+6.09i)T+83iT2 |
| 89 | 1+(−3.79+6.57i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−10.9−10.9i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61974182351100371896312296014, −9.835138256073864876151901587046, −8.569078585936024924695661957907, −7.66605501592443047338459426174, −7.52328447882179769904009342969, −6.12583869411009859825347608232, −5.23370703769035478869620665979, −3.92442920928176887944129410703, −3.47660047911764005673170106334, −1.00144237195915450426852081820,
1.22696977177783757529947107870, 2.80989044325434875284034648782, 3.81240382978707089818980717818, 4.86539174386239332140151774495, 5.73771076013078551985044525742, 7.12046217146979754075663376557, 8.041191595434816911359700999633, 8.912611447926152015640648737116, 9.613108249540152748062979423348, 10.77880238331969175750697249410