L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (1.48 + 1.67i)5-s + (1.30 − 2.30i)7-s + (0.707 + 0.707i)8-s + (1.23 − 1.86i)10-s + (3.21 − 1.85i)11-s + (−4.62 + 4.62i)13-s + (−2.56 − 0.662i)14-s + (0.500 − 0.866i)16-s + (5.06 + 1.35i)17-s + (−0.866 − 0.5i)19-s + (−2.12 − 0.707i)20-s + (−2.62 − 2.62i)22-s + (4.10 − 1.09i)23-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.433 + 0.249i)4-s + (0.663 + 0.748i)5-s + (0.492 − 0.870i)7-s + (0.249 + 0.249i)8-s + (0.389 − 0.590i)10-s + (0.968 − 0.559i)11-s + (−1.28 + 1.28i)13-s + (−0.684 − 0.177i)14-s + (0.125 − 0.216i)16-s + (1.22 + 0.329i)17-s + (−0.198 − 0.114i)19-s + (−0.474 − 0.158i)20-s + (−0.559 − 0.559i)22-s + (0.854 − 0.229i)23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.840+0.542i)Λ(2−s)
Λ(s)=(=(630s/2ΓC(s+1/2)L(s)(0.840+0.542i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.840+0.542i
|
Analytic conductor: |
5.03057 |
Root analytic conductor: |
2.24289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :1/2), 0.840+0.542i)
|
Particular Values
L(1) |
≈ |
1.51847−0.447621i |
L(21) |
≈ |
1.51847−0.447621i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258+0.965i)T |
| 3 | 1 |
| 5 | 1+(−1.48−1.67i)T |
| 7 | 1+(−1.30+2.30i)T |
good | 11 | 1+(−3.21+1.85i)T+(5.5−9.52i)T2 |
| 13 | 1+(4.62−4.62i)T−13iT2 |
| 17 | 1+(−5.06−1.35i)T+(14.7+8.5i)T2 |
| 19 | 1+(0.866+0.5i)T+(9.5+16.4i)T2 |
| 23 | 1+(−4.10+1.09i)T+(19.9−11.5i)T2 |
| 29 | 1−2.82T+29T2 |
| 31 | 1+(2+3.46i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−10.4+2.79i)T+(32.0−18.5i)T2 |
| 41 | 1+0.880iT−41T2 |
| 43 | 1+(−3+3i)T−43iT2 |
| 47 | 1+(−2.32−8.69i)T+(−40.7+23.5i)T2 |
| 53 | 1+(0.581−2.16i)T+(−45.8−26.5i)T2 |
| 59 | 1+(5.83+10.0i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.62+2.81i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.56−9.56i)T+(−58.0−33.5i)T2 |
| 71 | 1+10.2iT−71T2 |
| 73 | 1+(13.9+3.74i)T+(63.2+36.5i)T2 |
| 79 | 1+(−2.38−1.37i)T+(39.5+68.4i)T2 |
| 83 | 1+(−6.53−6.53i)T+83iT2 |
| 89 | 1+(4.94−8.57i)T+(−44.5−77.0i)T2 |
| 97 | 1+(9.24+9.24i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59938090921911019783539575131, −9.656723269724921851003245979681, −9.188081186110901066846652014196, −7.81786565972850134982002646247, −7.05163649252767264676659925687, −6.07816850433543122173115654384, −4.72880292653376587705904861964, −3.77904875606644749474743056300, −2.54392219225770456374796043151, −1.28861114684287750746198181325,
1.23907272182159115839751284693, 2.76372674786876487565830839044, 4.58221377063638498597194088901, 5.29848184062854407323399278779, 5.98762595824786683554605677225, 7.24048888169448116789166990883, 8.058213035117390180818985566135, 8.949031978069033470377644629528, 9.633713431805765402068448270464, 10.29128915455658227900741816171