L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (1.48 + 1.67i)5-s + (1.30 − 2.30i)7-s + (0.707 + 0.707i)8-s + (1.23 − 1.86i)10-s + (3.21 − 1.85i)11-s + (−4.62 + 4.62i)13-s + (−2.56 − 0.662i)14-s + (0.500 − 0.866i)16-s + (5.06 + 1.35i)17-s + (−0.866 − 0.5i)19-s + (−2.12 − 0.707i)20-s + (−2.62 − 2.62i)22-s + (4.10 − 1.09i)23-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.433 + 0.249i)4-s + (0.663 + 0.748i)5-s + (0.492 − 0.870i)7-s + (0.249 + 0.249i)8-s + (0.389 − 0.590i)10-s + (0.968 − 0.559i)11-s + (−1.28 + 1.28i)13-s + (−0.684 − 0.177i)14-s + (0.125 − 0.216i)16-s + (1.22 + 0.329i)17-s + (−0.198 − 0.114i)19-s + (−0.474 − 0.158i)20-s + (−0.559 − 0.559i)22-s + (0.854 − 0.229i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.840 + 0.542i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.840 + 0.542i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.51847 - 0.447621i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51847 - 0.447621i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.48 - 1.67i)T \) |
| 7 | \( 1 + (-1.30 + 2.30i)T \) |
good | 11 | \( 1 + (-3.21 + 1.85i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (4.62 - 4.62i)T - 13iT^{2} \) |
| 17 | \( 1 + (-5.06 - 1.35i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.10 + 1.09i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-10.4 + 2.79i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 0.880iT - 41T^{2} \) |
| 43 | \( 1 + (-3 + 3i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.32 - 8.69i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (0.581 - 2.16i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (5.83 + 10.0i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.62 + 2.81i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.56 - 9.56i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 10.2iT - 71T^{2} \) |
| 73 | \( 1 + (13.9 + 3.74i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-2.38 - 1.37i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.53 - 6.53i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.94 - 8.57i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (9.24 + 9.24i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59938090921911019783539575131, −9.656723269724921851003245979681, −9.188081186110901066846652014196, −7.81786565972850134982002646247, −7.05163649252767264676659925687, −6.07816850433543122173115654384, −4.72880292653376587705904861964, −3.77904875606644749474743056300, −2.54392219225770456374796043151, −1.28861114684287750746198181325,
1.23907272182159115839751284693, 2.76372674786876487565830839044, 4.58221377063638498597194088901, 5.29848184062854407323399278779, 5.98762595824786683554605677225, 7.24048888169448116789166990883, 8.058213035117390180818985566135, 8.949031978069033470377644629528, 9.633713431805765402068448270464, 10.29128915455658227900741816171