L(s) = 1 | − 0.561·5-s − 11-s − 2·13-s − 7.12·17-s − 1.12·19-s − 7.68·23-s − 4.68·25-s + 7.12·29-s + 5.43·31-s + 5.68·37-s + 8.24·41-s − 1.12·43-s − 4·47-s − 7·49-s + 8.24·53-s + 0.561·55-s + 0.315·59-s − 9.36·61-s + 1.12·65-s + 7.68·67-s + 15.6·71-s − 6·73-s + 13.1·79-s + 11.3·83-s + 4·85-s − 0.561·89-s + 0.630·95-s + ⋯ |
L(s) = 1 | − 0.251·5-s − 0.301·11-s − 0.554·13-s − 1.72·17-s − 0.257·19-s − 1.60·23-s − 0.936·25-s + 1.32·29-s + 0.976·31-s + 0.934·37-s + 1.28·41-s − 0.171·43-s − 0.583·47-s − 49-s + 1.13·53-s + 0.0757·55-s + 0.0410·59-s − 1.19·61-s + 0.139·65-s + 0.938·67-s + 1.86·71-s − 0.702·73-s + 1.47·79-s + 1.24·83-s + 0.433·85-s − 0.0595·89-s + 0.0647·95-s + ⋯ |
Λ(s)=(=(6336s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6336s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.211133611 |
L(21) |
≈ |
1.211133611 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+T |
good | 5 | 1+0.561T+5T2 |
| 7 | 1+7T2 |
| 13 | 1+2T+13T2 |
| 17 | 1+7.12T+17T2 |
| 19 | 1+1.12T+19T2 |
| 23 | 1+7.68T+23T2 |
| 29 | 1−7.12T+29T2 |
| 31 | 1−5.43T+31T2 |
| 37 | 1−5.68T+37T2 |
| 41 | 1−8.24T+41T2 |
| 43 | 1+1.12T+43T2 |
| 47 | 1+4T+47T2 |
| 53 | 1−8.24T+53T2 |
| 59 | 1−0.315T+59T2 |
| 61 | 1+9.36T+61T2 |
| 67 | 1−7.68T+67T2 |
| 71 | 1−15.6T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1−11.3T+83T2 |
| 89 | 1+0.561T+89T2 |
| 97 | 1−5.68T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.019430595467747593397337984093, −7.46803125053773855341117261493, −6.33428244849035194162063066223, −6.27417661180688312398336058062, −4.98215324249077053170380155304, −4.45555337512782494579671955400, −3.74790363952911656594424461630, −2.56693275154179492329905877024, −2.06308837701462828438497134662, −0.54421452148532331857859714146,
0.54421452148532331857859714146, 2.06308837701462828438497134662, 2.56693275154179492329905877024, 3.74790363952911656594424461630, 4.45555337512782494579671955400, 4.98215324249077053170380155304, 6.27417661180688312398336058062, 6.33428244849035194162063066223, 7.46803125053773855341117261493, 8.019430595467747593397337984093