Properties

Label 2-6336-1.1-c1-0-10
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.561·5-s − 11-s − 2·13-s − 7.12·17-s − 1.12·19-s − 7.68·23-s − 4.68·25-s + 7.12·29-s + 5.43·31-s + 5.68·37-s + 8.24·41-s − 1.12·43-s − 4·47-s − 7·49-s + 8.24·53-s + 0.561·55-s + 0.315·59-s − 9.36·61-s + 1.12·65-s + 7.68·67-s + 15.6·71-s − 6·73-s + 13.1·79-s + 11.3·83-s + 4·85-s − 0.561·89-s + 0.630·95-s + ⋯
L(s)  = 1  − 0.251·5-s − 0.301·11-s − 0.554·13-s − 1.72·17-s − 0.257·19-s − 1.60·23-s − 0.936·25-s + 1.32·29-s + 0.976·31-s + 0.934·37-s + 1.28·41-s − 0.171·43-s − 0.583·47-s − 49-s + 1.13·53-s + 0.0757·55-s + 0.0410·59-s − 1.19·61-s + 0.139·65-s + 0.938·67-s + 1.86·71-s − 0.702·73-s + 1.47·79-s + 1.24·83-s + 0.433·85-s − 0.0595·89-s + 0.0647·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.211133611\)
\(L(\frac12)\) \(\approx\) \(1.211133611\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 0.561T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 7.12T + 17T^{2} \)
19 \( 1 + 1.12T + 19T^{2} \)
23 \( 1 + 7.68T + 23T^{2} \)
29 \( 1 - 7.12T + 29T^{2} \)
31 \( 1 - 5.43T + 31T^{2} \)
37 \( 1 - 5.68T + 37T^{2} \)
41 \( 1 - 8.24T + 41T^{2} \)
43 \( 1 + 1.12T + 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 - 8.24T + 53T^{2} \)
59 \( 1 - 0.315T + 59T^{2} \)
61 \( 1 + 9.36T + 61T^{2} \)
67 \( 1 - 7.68T + 67T^{2} \)
71 \( 1 - 15.6T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 13.1T + 79T^{2} \)
83 \( 1 - 11.3T + 83T^{2} \)
89 \( 1 + 0.561T + 89T^{2} \)
97 \( 1 - 5.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.019430595467747593397337984093, −7.46803125053773855341117261493, −6.33428244849035194162063066223, −6.27417661180688312398336058062, −4.98215324249077053170380155304, −4.45555337512782494579671955400, −3.74790363952911656594424461630, −2.56693275154179492329905877024, −2.06308837701462828438497134662, −0.54421452148532331857859714146, 0.54421452148532331857859714146, 2.06308837701462828438497134662, 2.56693275154179492329905877024, 3.74790363952911656594424461630, 4.45555337512782494579671955400, 4.98215324249077053170380155304, 6.27417661180688312398336058062, 6.33428244849035194162063066223, 7.46803125053773855341117261493, 8.019430595467747593397337984093

Graph of the $Z$-function along the critical line