L(s) = 1 | + 2.82·5-s − 3.46·7-s + 11-s − 6.89·13-s − 6.29·17-s + 6.29·19-s − 4.89·23-s + 3.00·25-s − 0.635·29-s + 5.65·31-s − 9.79·35-s + 7.79·37-s + 0.635·41-s − 0.635·43-s + 8.89·47-s + 4.99·49-s − 9.75·53-s + 2.82·55-s + 13.7·59-s − 1.10·61-s − 19.5·65-s − 0.898·71-s + 6·73-s − 3.46·77-s + 16.0·79-s + 13.7·83-s − 17.7·85-s + ⋯ |
L(s) = 1 | + 1.26·5-s − 1.30·7-s + 0.301·11-s − 1.91·13-s − 1.52·17-s + 1.44·19-s − 1.02·23-s + 0.600·25-s − 0.118·29-s + 1.01·31-s − 1.65·35-s + 1.28·37-s + 0.0992·41-s − 0.0969·43-s + 1.29·47-s + 0.714·49-s − 1.34·53-s + 0.381·55-s + 1.79·59-s − 0.140·61-s − 2.42·65-s − 0.106·71-s + 0.702·73-s − 0.394·77-s + 1.80·79-s + 1.51·83-s − 1.93·85-s + ⋯ |
Λ(s)=(=(6336s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6336s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.681950555 |
L(21) |
≈ |
1.681950555 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1−T |
good | 5 | 1−2.82T+5T2 |
| 7 | 1+3.46T+7T2 |
| 13 | 1+6.89T+13T2 |
| 17 | 1+6.29T+17T2 |
| 19 | 1−6.29T+19T2 |
| 23 | 1+4.89T+23T2 |
| 29 | 1+0.635T+29T2 |
| 31 | 1−5.65T+31T2 |
| 37 | 1−7.79T+37T2 |
| 41 | 1−0.635T+41T2 |
| 43 | 1+0.635T+43T2 |
| 47 | 1−8.89T+47T2 |
| 53 | 1+9.75T+53T2 |
| 59 | 1−13.7T+59T2 |
| 61 | 1+1.10T+61T2 |
| 67 | 1+67T2 |
| 71 | 1+0.898T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−16.0T+79T2 |
| 83 | 1−13.7T+83T2 |
| 89 | 1−11.3T+89T2 |
| 97 | 1−10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.905223123986246862873064002210, −7.21439262108034744135066405181, −6.45875311241772379344711071998, −6.11157619207806244802977224557, −5.20916201261149202982237403020, −4.54955986767053330863450320982, −3.50014821287720639728779437694, −2.50445373908225859169491463917, −2.17559730464917952259053966265, −0.63956868108358842487663114790,
0.63956868108358842487663114790, 2.17559730464917952259053966265, 2.50445373908225859169491463917, 3.50014821287720639728779437694, 4.54955986767053330863450320982, 5.20916201261149202982237403020, 6.11157619207806244802977224557, 6.45875311241772379344711071998, 7.21439262108034744135066405181, 7.905223123986246862873064002210