L(s) = 1 | − 3·5-s + 2·7-s + 11-s + 6·17-s + 4·19-s + 23-s + 4·25-s − 8·29-s + 7·31-s − 6·35-s + 37-s − 4·41-s + 6·43-s − 8·47-s − 3·49-s + 2·53-s − 3·55-s + 59-s − 4·61-s − 5·67-s + 3·71-s + 16·73-s + 2·77-s − 2·79-s + 2·83-s − 18·85-s − 15·89-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 0.755·7-s + 0.301·11-s + 1.45·17-s + 0.917·19-s + 0.208·23-s + 4/5·25-s − 1.48·29-s + 1.25·31-s − 1.01·35-s + 0.164·37-s − 0.624·41-s + 0.914·43-s − 1.16·47-s − 3/7·49-s + 0.274·53-s − 0.404·55-s + 0.130·59-s − 0.512·61-s − 0.610·67-s + 0.356·71-s + 1.87·73-s + 0.227·77-s − 0.225·79-s + 0.219·83-s − 1.95·85-s − 1.58·89-s + ⋯ |
Λ(s)=(=(6336s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6336s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.736087912 |
L(21) |
≈ |
1.736087912 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1−T |
good | 5 | 1+3T+pT2 |
| 7 | 1−2T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1−T+pT2 |
| 29 | 1+8T+pT2 |
| 31 | 1−7T+pT2 |
| 37 | 1−T+pT2 |
| 41 | 1+4T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−T+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1+5T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1−16T+pT2 |
| 79 | 1+2T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1+7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.927629123853046774697751456251, −7.55252528081176974112132450170, −6.82671507782272554192070208796, −5.79242088578546656641015440150, −5.10583765748157113159455391169, −4.37221035310191883411362450637, −3.60822760858280223727828451956, −3.02374111947685053319903637317, −1.66294893612641948046386286042, −0.72016671080523259380610994522,
0.72016671080523259380610994522, 1.66294893612641948046386286042, 3.02374111947685053319903637317, 3.60822760858280223727828451956, 4.37221035310191883411362450637, 5.10583765748157113159455391169, 5.79242088578546656641015440150, 6.82671507782272554192070208796, 7.55252528081176974112132450170, 7.927629123853046774697751456251