L(s) = 1 | − 2.82·5-s − 0.828·7-s + 11-s − 4.82·13-s + 2·17-s − 2·19-s − 2.82·23-s + 3.00·25-s + 3.65·29-s + 9.65·31-s + 2.34·35-s − 7.65·37-s + 0.343·41-s − 0.343·43-s − 12.4·47-s − 6.31·49-s − 6.82·53-s − 2.82·55-s − 1.65·59-s − 3.17·61-s + 13.6·65-s − 11.3·67-s + 4.48·71-s − 13.3·73-s − 0.828·77-s + 4.82·79-s + 9.65·83-s + ⋯ |
L(s) = 1 | − 1.26·5-s − 0.313·7-s + 0.301·11-s − 1.33·13-s + 0.485·17-s − 0.458·19-s − 0.589·23-s + 0.600·25-s + 0.679·29-s + 1.73·31-s + 0.396·35-s − 1.25·37-s + 0.0535·41-s − 0.0523·43-s − 1.82·47-s − 0.901·49-s − 0.937·53-s − 0.381·55-s − 0.215·59-s − 0.406·61-s + 1.69·65-s − 1.38·67-s + 0.532·71-s − 1.55·73-s − 0.0944·77-s + 0.543·79-s + 1.05·83-s + ⋯ |
Λ(s)=(=(6336s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6336s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8093440498 |
L(21) |
≈ |
0.8093440498 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1−T |
good | 5 | 1+2.82T+5T2 |
| 7 | 1+0.828T+7T2 |
| 13 | 1+4.82T+13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+2T+19T2 |
| 23 | 1+2.82T+23T2 |
| 29 | 1−3.65T+29T2 |
| 31 | 1−9.65T+31T2 |
| 37 | 1+7.65T+37T2 |
| 41 | 1−0.343T+41T2 |
| 43 | 1+0.343T+43T2 |
| 47 | 1+12.4T+47T2 |
| 53 | 1+6.82T+53T2 |
| 59 | 1+1.65T+59T2 |
| 61 | 1+3.17T+61T2 |
| 67 | 1+11.3T+67T2 |
| 71 | 1−4.48T+71T2 |
| 73 | 1+13.3T+73T2 |
| 79 | 1−4.82T+79T2 |
| 83 | 1−9.65T+83T2 |
| 89 | 1−16T+89T2 |
| 97 | 1−5.31T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.972007944822836248574710012428, −7.45456544310963278037573254931, −6.66916883016553632340557607255, −6.08525708781090043354901226065, −4.77727849978647910191516636017, −4.62605260942949346626473062326, −3.51592438580234671701714218037, −2.99679383975078778404603549766, −1.84033092862646119575103451648, −0.45303433350119744858200838320,
0.45303433350119744858200838320, 1.84033092862646119575103451648, 2.99679383975078778404603549766, 3.51592438580234671701714218037, 4.62605260942949346626473062326, 4.77727849978647910191516636017, 6.08525708781090043354901226065, 6.66916883016553632340557607255, 7.45456544310963278037573254931, 7.972007944822836248574710012428