Properties

Label 2-6336-1.1-c1-0-30
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 4·7-s − 11-s + 2·13-s + 8·17-s + 6·19-s + 5·23-s + 4·25-s + 4·29-s − 31-s − 12·35-s − 3·37-s + 6·41-s − 6·43-s − 12·47-s + 9·49-s − 6·53-s + 3·55-s − 3·59-s − 6·65-s + 11·67-s − 5·71-s − 10·73-s − 4·77-s + 2·79-s + 2·83-s − 24·85-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.51·7-s − 0.301·11-s + 0.554·13-s + 1.94·17-s + 1.37·19-s + 1.04·23-s + 4/5·25-s + 0.742·29-s − 0.179·31-s − 2.02·35-s − 0.493·37-s + 0.937·41-s − 0.914·43-s − 1.75·47-s + 9/7·49-s − 0.824·53-s + 0.404·55-s − 0.390·59-s − 0.744·65-s + 1.34·67-s − 0.593·71-s − 1.17·73-s − 0.455·77-s + 0.225·79-s + 0.219·83-s − 2.60·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.196571249\)
\(L(\frac12)\) \(\approx\) \(2.196571249\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 5 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 - 5 T + p T^{2} \)
97 \( 1 - 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.956934014776591607573900251598, −7.61429997405739391186912692284, −6.87418988730690416783672401623, −5.68424301869154296654936031860, −5.06592095202887449192765721037, −4.53711525064349731406861939231, −3.48294779280892225932738048713, −3.09318696203506207589934529729, −1.56276573574415865649083879116, −0.856353036609411667859710468731, 0.856353036609411667859710468731, 1.56276573574415865649083879116, 3.09318696203506207589934529729, 3.48294779280892225932738048713, 4.53711525064349731406861939231, 5.06592095202887449192765721037, 5.68424301869154296654936031860, 6.87418988730690416783672401623, 7.61429997405739391186912692284, 7.956934014776591607573900251598

Graph of the $Z$-function along the critical line