L(s) = 1 | − 2.00·2-s − 1.75·3-s + 2.03·4-s − 0.905·5-s + 3.53·6-s − 0.0686·8-s + 0.0942·9-s + 1.81·10-s + 0.716·11-s − 3.57·12-s − 13-s + 1.59·15-s − 3.93·16-s − 2.35·17-s − 0.189·18-s − 6.63·19-s − 1.84·20-s − 1.43·22-s + 3.75·23-s + 0.120·24-s − 4.17·25-s + 2.00·26-s + 5.11·27-s + 3.25·29-s − 3.20·30-s − 1.57·31-s + 8.03·32-s + ⋯ |
L(s) = 1 | − 1.42·2-s − 1.01·3-s + 1.01·4-s − 0.405·5-s + 1.44·6-s − 0.0242·8-s + 0.0314·9-s + 0.575·10-s + 0.215·11-s − 1.03·12-s − 0.277·13-s + 0.411·15-s − 0.982·16-s − 0.570·17-s − 0.0446·18-s − 1.52·19-s − 0.411·20-s − 0.306·22-s + 0.783·23-s + 0.0246·24-s − 0.835·25-s + 0.393·26-s + 0.983·27-s + 0.604·29-s − 0.584·30-s − 0.282·31-s + 1.41·32-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3060607450 |
L(21) |
≈ |
0.3060607450 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+T |
good | 2 | 1+2.00T+2T2 |
| 3 | 1+1.75T+3T2 |
| 5 | 1+0.905T+5T2 |
| 11 | 1−0.716T+11T2 |
| 17 | 1+2.35T+17T2 |
| 19 | 1+6.63T+19T2 |
| 23 | 1−3.75T+23T2 |
| 29 | 1−3.25T+29T2 |
| 31 | 1+1.57T+31T2 |
| 37 | 1−5.20T+37T2 |
| 41 | 1+4.92T+41T2 |
| 43 | 1+9.43T+43T2 |
| 47 | 1−8.31T+47T2 |
| 53 | 1−14.0T+53T2 |
| 59 | 1+0.716T+59T2 |
| 61 | 1−11.6T+61T2 |
| 67 | 1−9.39T+67T2 |
| 71 | 1−10.9T+71T2 |
| 73 | 1−3.47T+73T2 |
| 79 | 1−13.0T+79T2 |
| 83 | 1+3.54T+83T2 |
| 89 | 1+12.0T+89T2 |
| 97 | 1+7.43T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57323558578137676195984937419, −9.793600687529902077373433257744, −8.738217503189565302578205662201, −8.227241499656225880955860428158, −7.03542766398972229338840233414, −6.45151260537239723045933174400, −5.19146952663274279601492832562, −4.11950990912236128083857857925, −2.25130907375641470428688420174, −0.59997345471379059232210335297,
0.59997345471379059232210335297, 2.25130907375641470428688420174, 4.11950990912236128083857857925, 5.19146952663274279601492832562, 6.45151260537239723045933174400, 7.03542766398972229338840233414, 8.227241499656225880955860428158, 8.738217503189565302578205662201, 9.793600687529902077373433257744, 10.57323558578137676195984937419