L(s) = 1 | + 1.83·2-s + 0.853·3-s + 1.35·4-s + 2.62·5-s + 1.56·6-s − 1.17·8-s − 2.27·9-s + 4.81·10-s + 3.26·11-s + 1.15·12-s + 13-s + 2.24·15-s − 4.87·16-s + 4.53·17-s − 4.16·18-s + 4.06·19-s + 3.56·20-s + 5.98·22-s − 4.53·23-s − 1.00·24-s + 1.89·25-s + 1.83·26-s − 4.50·27-s − 1.42·29-s + 4.10·30-s − 2.80·31-s − 6.57·32-s + ⋯ |
L(s) = 1 | + 1.29·2-s + 0.492·3-s + 0.678·4-s + 1.17·5-s + 0.638·6-s − 0.416·8-s − 0.757·9-s + 1.52·10-s + 0.984·11-s + 0.334·12-s + 0.277·13-s + 0.578·15-s − 1.21·16-s + 1.09·17-s − 0.980·18-s + 0.932·19-s + 0.797·20-s + 1.27·22-s − 0.945·23-s − 0.205·24-s + 0.378·25-s + 0.359·26-s − 0.866·27-s − 0.264·29-s + 0.749·30-s − 0.503·31-s − 1.16·32-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.658519729 |
L(21) |
≈ |
3.658519729 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1−T |
good | 2 | 1−1.83T+2T2 |
| 3 | 1−0.853T+3T2 |
| 5 | 1−2.62T+5T2 |
| 11 | 1−3.26T+11T2 |
| 17 | 1−4.53T+17T2 |
| 19 | 1−4.06T+19T2 |
| 23 | 1+4.53T+23T2 |
| 29 | 1+1.42T+29T2 |
| 31 | 1+2.80T+31T2 |
| 37 | 1+10.0T+37T2 |
| 41 | 1+2.84T+41T2 |
| 43 | 1−9.72T+43T2 |
| 47 | 1+9.44T+47T2 |
| 53 | 1−5.26T+53T2 |
| 59 | 1+2.56T+59T2 |
| 61 | 1+11.1T+61T2 |
| 67 | 1+1.98T+67T2 |
| 71 | 1+11.7T+71T2 |
| 73 | 1−12.1T+73T2 |
| 79 | 1−11.9T+79T2 |
| 83 | 1−13.2T+83T2 |
| 89 | 1−10.6T+89T2 |
| 97 | 1+13.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66354676703402963636632321490, −9.486718033023664631628693345734, −9.120832731181008022570243555899, −7.910692728784159615642134206833, −6.59152220820597614388635124341, −5.79198189725718630430871254835, −5.26562698114258209798116913137, −3.83667107048168242498577795091, −3.09389315517282991663458065506, −1.82639530032567334447259075068,
1.82639530032567334447259075068, 3.09389315517282991663458065506, 3.83667107048168242498577795091, 5.26562698114258209798116913137, 5.79198189725718630430871254835, 6.59152220820597614388635124341, 7.910692728784159615642134206833, 9.120832731181008022570243555899, 9.486718033023664631628693345734, 10.66354676703402963636632321490