L(s) = 1 | + (−0.433 + 0.249i)2-s + (−0.424 − 0.735i)3-s + (−0.875 + 1.51i)4-s + 1.04i·5-s + (0.367 + 0.212i)6-s − 1.87i·8-s + (1.13 − 1.97i)9-s + (−0.260 − 0.451i)10-s + (3.43 − 1.98i)11-s + 1.48·12-s + (−3.57 − 0.468i)13-s + (0.767 − 0.442i)15-s + (−1.28 − 2.21i)16-s + (−0.0710 + 0.123i)17-s + 1.13i·18-s + (4.77 + 2.75i)19-s + ⋯ |
L(s) = 1 | + (−0.306 + 0.176i)2-s + (−0.245 − 0.424i)3-s + (−0.437 + 0.757i)4-s + 0.466i·5-s + (0.150 + 0.0867i)6-s − 0.662i·8-s + (0.379 − 0.657i)9-s + (−0.0824 − 0.142i)10-s + (1.03 − 0.598i)11-s + 0.429·12-s + (−0.991 − 0.129i)13-s + (0.198 − 0.114i)15-s + (−0.320 − 0.554i)16-s + (−0.0172 + 0.0298i)17-s + 0.268i·18-s + (1.09 + 0.632i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 - 0.371i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.928 - 0.371i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08156 + 0.208332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08156 + 0.208332i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.57 + 0.468i)T \) |
good | 2 | \( 1 + (0.433 - 0.249i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.424 + 0.735i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 1.04iT - 5T^{2} \) |
| 11 | \( 1 + (-3.43 + 1.98i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.0710 - 0.123i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.77 - 2.75i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.19 - 3.80i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.19 - 7.27i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.84iT - 31T^{2} \) |
| 37 | \( 1 + (-0.730 + 0.421i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-10.4 + 6.04i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.41 + 4.17i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.55iT - 47T^{2} \) |
| 53 | \( 1 + 0.279T + 53T^{2} \) |
| 59 | \( 1 + (9.33 + 5.39i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.93 + 5.07i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.45 + 2.57i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.20 + 1.84i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.61iT - 73T^{2} \) |
| 79 | \( 1 - 11.9T + 79T^{2} \) |
| 83 | \( 1 - 2.87iT - 83T^{2} \) |
| 89 | \( 1 + (1.51 - 0.873i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.34 - 1.35i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60882212055638734666416371641, −9.435745949877576154292798819781, −9.087873302934792698598721901436, −7.82051164257469918295432223378, −7.13508305135999994496736027494, −6.47982624790582097850862941076, −5.18240606633020109714091483370, −3.85214166599430489875327445638, −3.05913663715947658292060613292, −1.04493236519164816067152549530,
0.992099393083938129384946740407, 2.43266480620686340619901307089, 4.54800464525287789358321593265, 4.63464148415020974752376510276, 5.84157674600969944515844030069, 6.99244553405375949298420028250, 8.022827026997985426417870199424, 9.233839173175900122792282047441, 9.564278143754343255640967499569, 10.36105142528090435419594722295