L(s) = 1 | + (0.906 − 1.57i)2-s + (−1.55 − 2.68i)3-s + (−0.644 − 1.11i)4-s + (1.40 − 2.43i)5-s − 5.62·6-s + 1.28·8-s + (−3.31 + 5.73i)9-s + (−2.55 − 4.41i)10-s + (−1.55 − 2.68i)11-s + (−2 + 3.46i)12-s − 13-s − 8.72·15-s + (2.45 − 4.25i)16-s + (−0.262 − 0.454i)17-s + (6.00 + 10.4i)18-s + (0.406 − 0.704i)19-s + ⋯ |
L(s) = 1 | + (0.641 − 1.11i)2-s + (−0.895 − 1.55i)3-s + (−0.322 − 0.558i)4-s + (0.629 − 1.08i)5-s − 2.29·6-s + 0.455·8-s + (−1.10 + 1.91i)9-s + (−0.806 − 1.39i)10-s + (−0.467 − 0.810i)11-s + (−0.577 + 0.999i)12-s − 0.277·13-s − 2.25·15-s + (0.614 − 1.06i)16-s + (−0.0635 − 0.110i)17-s + (1.41 + 2.45i)18-s + (0.0933 − 0.161i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.629016 + 1.50093i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.629016 + 1.50093i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (-0.906 + 1.57i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1.55 + 2.68i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.40 + 2.43i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.55 + 2.68i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.262 + 0.454i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.406 + 0.704i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.66 - 6.35i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.28T + 29T^{2} \) |
| 31 | \( 1 + (-0.695 - 1.20i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.07 + 5.32i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.20T + 41T^{2} \) |
| 43 | \( 1 - 6.75T + 43T^{2} \) |
| 47 | \( 1 + (2.98 - 5.17i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.24 - 2.16i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.23 + 3.87i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.01 + 8.69i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.72T + 71T^{2} \) |
| 73 | \( 1 + (1.17 + 2.02i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.77 + 11.7i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 16.4T + 83T^{2} \) |
| 89 | \( 1 + (5.32 - 9.22i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.18T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47492187228823632483050621938, −9.305990736981342957082896582443, −8.100384631701187024232234947553, −7.40321033069247233674675982281, −6.07793994704081283157373153652, −5.46355984273638963438637246969, −4.57077906792325200306757563257, −2.84483254243896179756225455504, −1.75351923697494255766619066191, −0.833195135585768240361321609726,
2.70773884382702482345612865720, 4.21252836670046350555412295825, 4.75908726347504027279103993852, 5.78675076298302276214829733258, 6.32682940953795952650042079449, 7.14468163194066106584716347651, 8.430742380790530112496929463640, 9.860432983980560533898650850793, 10.22229773079471605947478478593, 10.77075359297496732623821858120