L(s) = 1 | + (0.588 + 1.01i)2-s + (−1.67 + 2.90i)3-s + (0.308 − 0.533i)4-s + (−1.57 − 2.72i)5-s − 3.94·6-s + 3.07·8-s + (−4.11 − 7.12i)9-s + (1.85 − 3.20i)10-s + (0.386 − 0.669i)11-s + (1.03 + 1.78i)12-s + 13-s + 10.5·15-s + (1.19 + 2.06i)16-s + (2.87 − 4.98i)17-s + (4.83 − 8.38i)18-s + (0.611 + 1.05i)19-s + ⋯ |
L(s) = 1 | + (0.415 + 0.720i)2-s + (−0.967 + 1.67i)3-s + (0.154 − 0.266i)4-s + (−0.704 − 1.21i)5-s − 1.60·6-s + 1.08·8-s + (−1.37 − 2.37i)9-s + (0.585 − 1.01i)10-s + (0.116 − 0.201i)11-s + (0.298 + 0.516i)12-s + 0.277·13-s + 2.72·15-s + (0.298 + 0.516i)16-s + (0.697 − 1.20i)17-s + (1.14 − 1.97i)18-s + (0.140 + 0.242i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.947−0.318i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.947−0.318i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.947−0.318i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(508,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.947−0.318i)
|
Particular Values
L(1) |
≈ |
1.18869+0.194406i |
L(21) |
≈ |
1.18869+0.194406i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1−T |
good | 2 | 1+(−0.588−1.01i)T+(−1+1.73i)T2 |
| 3 | 1+(1.67−2.90i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.57+2.72i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.386+0.669i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−2.87+4.98i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.611−1.05i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.49−2.59i)T+(−11.5+19.9i)T2 |
| 29 | 1+2.46T+29T2 |
| 31 | 1+(−3.06+5.31i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.49+4.32i)T+(−18.5+32.0i)T2 |
| 41 | 1+2.55T+41T2 |
| 43 | 1+2.73T+43T2 |
| 47 | 1+(2.68+4.65i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−4.89+8.47i)T+(−26.5−45.8i)T2 |
| 59 | 1+(1.25−2.16i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5.45−9.45i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.16−3.74i)T+(−33.5−58.0i)T2 |
| 71 | 1−10.6T+71T2 |
| 73 | 1+(−2.58+4.48i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−0.271−0.469i)T+(−39.5+68.4i)T2 |
| 83 | 1−15.2T+83T2 |
| 89 | 1+(4.61+7.99i)T+(−44.5+77.0i)T2 |
| 97 | 1+1.26T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59687253695894961458499949695, −9.775845539081196593750151760289, −9.076713134543225759603710745685, −8.023343557651541048360356550510, −6.78621408059178065761648644496, −5.56558715453895577651576444654, −5.26596210631090284479308473197, −4.41297229559688395789238665096, −3.61606488902854498404339955160, −0.71832641340275595539265413317,
1.41336570396533091983992863286, 2.58697800231998390392696015595, 3.58802049802836212621727640326, 5.06092016791022582861657263712, 6.40514107658929293048226730825, 6.85146845471497203510902445510, 7.71881962462945203706729332311, 8.258895861851563418286777164625, 10.38592953046474334582590630908, 10.90498238355645624648308928172