Properties

Label 2-637-7.4-c1-0-32
Degree $2$
Conductor $637$
Sign $0.605 + 0.795i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.605 + 1.04i)2-s + (0.872 − 1.51i)3-s + (0.267 − 0.462i)4-s + (−1.10 − 1.91i)5-s + 2.11·6-s + 3.06·8-s + (−0.0222 − 0.0384i)9-s + (1.33 − 2.31i)10-s + (0.394 − 0.683i)11-s + (−0.465 − 0.807i)12-s − 13-s − 3.85·15-s + (1.32 + 2.29i)16-s + (0.872 − 1.51i)17-s + (0.0268 − 0.0465i)18-s + (−2.16 − 3.74i)19-s + ⋯
L(s)  = 1  + (0.428 + 0.741i)2-s + (0.503 − 0.872i)3-s + (0.133 − 0.231i)4-s + (−0.494 − 0.856i)5-s + 0.862·6-s + 1.08·8-s + (−0.00740 − 0.0128i)9-s + (0.423 − 0.733i)10-s + (0.118 − 0.206i)11-s + (−0.134 − 0.232i)12-s − 0.277·13-s − 0.995·15-s + (0.330 + 0.573i)16-s + (0.211 − 0.366i)17-s + (0.00633 − 0.0109i)18-s + (−0.495 − 0.858i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $0.605 + 0.795i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (508, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 0.605 + 0.795i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.00242 - 0.992657i\)
\(L(\frac12)\) \(\approx\) \(2.00242 - 0.992657i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + (-0.605 - 1.04i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (-0.872 + 1.51i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (1.10 + 1.91i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-0.394 + 0.683i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-0.872 + 1.51i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.16 + 3.74i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.556 - 0.963i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 8.48T + 29T^{2} \)
31 \( 1 + (2.85 - 4.93i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1.13 + 1.97i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 12.1T + 41T^{2} \)
43 \( 1 - 8.06T + 43T^{2} \)
47 \( 1 + (4.37 + 7.57i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (3.97 - 6.88i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (5.47 - 9.48i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-6.53 - 11.3i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (3.27 - 5.67i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 5.85T + 71T^{2} \)
73 \( 1 + (4.00 - 6.93i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-3.45 - 5.98i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 3.14T + 83T^{2} \)
89 \( 1 + (1.69 + 2.93i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 0.0981T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55797825945503111318775342222, −9.257586224336709357742995011261, −8.503224478997118369996463048244, −7.45042002162371669303556715424, −7.20128532660423368151301995332, −5.96154487708859454262693760297, −5.03660732250445029573639450357, −4.13365207863155134252920858907, −2.41278615077544224271228918786, −1.09603677917384233727651398137, 2.07830902742602164839761354412, 3.29069334475054533268532651372, 3.79277665833716766049605035926, 4.66594180245265279257420702879, 6.19783866404153235566283056276, 7.37793754287445938114259314969, 7.977954112632355904953663499377, 9.278216530478113267221587200901, 9.975559949260956912075262593962, 10.98665053660586708081036171828

Graph of the $Z$-function along the critical line