L(s) = 1 | + (0.605 + 1.04i)2-s + (0.872 − 1.51i)3-s + (0.267 − 0.462i)4-s + (−1.10 − 1.91i)5-s + 2.11·6-s + 3.06·8-s + (−0.0222 − 0.0384i)9-s + (1.33 − 2.31i)10-s + (0.394 − 0.683i)11-s + (−0.465 − 0.807i)12-s − 13-s − 3.85·15-s + (1.32 + 2.29i)16-s + (0.872 − 1.51i)17-s + (0.0268 − 0.0465i)18-s + (−2.16 − 3.74i)19-s + ⋯ |
L(s) = 1 | + (0.428 + 0.741i)2-s + (0.503 − 0.872i)3-s + (0.133 − 0.231i)4-s + (−0.494 − 0.856i)5-s + 0.862·6-s + 1.08·8-s + (−0.00740 − 0.0128i)9-s + (0.423 − 0.733i)10-s + (0.118 − 0.206i)11-s + (−0.134 − 0.232i)12-s − 0.277·13-s − 0.995·15-s + (0.330 + 0.573i)16-s + (0.211 − 0.366i)17-s + (0.00633 − 0.0109i)18-s + (−0.495 − 0.858i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00242 - 0.992657i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00242 - 0.992657i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (-0.605 - 1.04i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.872 + 1.51i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.10 + 1.91i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.394 + 0.683i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.872 + 1.51i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.16 + 3.74i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.556 - 0.963i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 8.48T + 29T^{2} \) |
| 31 | \( 1 + (2.85 - 4.93i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.13 + 1.97i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 12.1T + 41T^{2} \) |
| 43 | \( 1 - 8.06T + 43T^{2} \) |
| 47 | \( 1 + (4.37 + 7.57i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.97 - 6.88i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.47 - 9.48i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.53 - 11.3i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.27 - 5.67i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.85T + 71T^{2} \) |
| 73 | \( 1 + (4.00 - 6.93i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.45 - 5.98i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.14T + 83T^{2} \) |
| 89 | \( 1 + (1.69 + 2.93i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 0.0981T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55797825945503111318775342222, −9.257586224336709357742995011261, −8.503224478997118369996463048244, −7.45042002162371669303556715424, −7.20128532660423368151301995332, −5.96154487708859454262693760297, −5.03660732250445029573639450357, −4.13365207863155134252920858907, −2.41278615077544224271228918786, −1.09603677917384233727651398137,
2.07830902742602164839761354412, 3.29069334475054533268532651372, 3.79277665833716766049605035926, 4.66594180245265279257420702879, 6.19783866404153235566283056276, 7.37793754287445938114259314969, 7.977954112632355904953663499377, 9.278216530478113267221587200901, 9.975559949260956912075262593962, 10.98665053660586708081036171828