L(s) = 1 | + (0.605 + 1.04i)2-s + (0.872 − 1.51i)3-s + (0.267 − 0.462i)4-s + (−1.10 − 1.91i)5-s + 2.11·6-s + 3.06·8-s + (−0.0222 − 0.0384i)9-s + (1.33 − 2.31i)10-s + (0.394 − 0.683i)11-s + (−0.465 − 0.807i)12-s − 13-s − 3.85·15-s + (1.32 + 2.29i)16-s + (0.872 − 1.51i)17-s + (0.0268 − 0.0465i)18-s + (−2.16 − 3.74i)19-s + ⋯ |
L(s) = 1 | + (0.428 + 0.741i)2-s + (0.503 − 0.872i)3-s + (0.133 − 0.231i)4-s + (−0.494 − 0.856i)5-s + 0.862·6-s + 1.08·8-s + (−0.00740 − 0.0128i)9-s + (0.423 − 0.733i)10-s + (0.118 − 0.206i)11-s + (−0.134 − 0.232i)12-s − 0.277·13-s − 0.995·15-s + (0.330 + 0.573i)16-s + (0.211 − 0.366i)17-s + (0.00633 − 0.0109i)18-s + (−0.495 − 0.858i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.605+0.795i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.605+0.795i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(508,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.605+0.795i)
|
Particular Values
L(1) |
≈ |
2.00242−0.992657i |
L(21) |
≈ |
2.00242−0.992657i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+T |
good | 2 | 1+(−0.605−1.04i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.872+1.51i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.10+1.91i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.394+0.683i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.872+1.51i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.16+3.74i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.556−0.963i)T+(−11.5+19.9i)T2 |
| 29 | 1+8.48T+29T2 |
| 31 | 1+(2.85−4.93i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.13+1.97i)T+(−18.5+32.0i)T2 |
| 41 | 1−12.1T+41T2 |
| 43 | 1−8.06T+43T2 |
| 47 | 1+(4.37+7.57i)T+(−23.5+40.7i)T2 |
| 53 | 1+(3.97−6.88i)T+(−26.5−45.8i)T2 |
| 59 | 1+(5.47−9.48i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6.53−11.3i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.27−5.67i)T+(−33.5−58.0i)T2 |
| 71 | 1−5.85T+71T2 |
| 73 | 1+(4.00−6.93i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3.45−5.98i)T+(−39.5+68.4i)T2 |
| 83 | 1−3.14T+83T2 |
| 89 | 1+(1.69+2.93i)T+(−44.5+77.0i)T2 |
| 97 | 1+0.0981T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55797825945503111318775342222, −9.257586224336709357742995011261, −8.503224478997118369996463048244, −7.45042002162371669303556715424, −7.20128532660423368151301995332, −5.96154487708859454262693760297, −5.03660732250445029573639450357, −4.13365207863155134252920858907, −2.41278615077544224271228918786, −1.09603677917384233727651398137,
2.07830902742602164839761354412, 3.29069334475054533268532651372, 3.79277665833716766049605035926, 4.66594180245265279257420702879, 6.19783866404153235566283056276, 7.37793754287445938114259314969, 7.977954112632355904953663499377, 9.278216530478113267221587200901, 9.975559949260956912075262593962, 10.98665053660586708081036171828