L(s) = 1 | − 1.90·2-s + (0.214 + 0.371i)3-s + 1.63·4-s + (−0.736 − 1.27i)5-s + (−0.408 − 0.707i)6-s + 0.702·8-s + (1.40 − 2.43i)9-s + (1.40 + 2.43i)10-s + (2.19 + 3.80i)11-s + (0.349 + 0.605i)12-s + (−2.69 + 2.39i)13-s + (0.315 − 0.546i)15-s − 4.60·16-s + 1.20·17-s + (−2.68 + 4.64i)18-s + (1.62 − 2.80i)19-s + ⋯ |
L(s) = 1 | − 1.34·2-s + (0.123 + 0.214i)3-s + 0.815·4-s + (−0.329 − 0.570i)5-s + (−0.166 − 0.288i)6-s + 0.248·8-s + (0.469 − 0.813i)9-s + (0.443 + 0.768i)10-s + (0.662 + 1.14i)11-s + (0.100 + 0.174i)12-s + (−0.748 + 0.663i)13-s + (0.0814 − 0.141i)15-s − 1.15·16-s + 0.291·17-s + (−0.632 + 1.09i)18-s + (0.371 − 0.644i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.894+0.446i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.894+0.446i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.894+0.446i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(165,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.894+0.446i)
|
Particular Values
L(1) |
≈ |
0.705747−0.166416i |
L(21) |
≈ |
0.705747−0.166416i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(2.69−2.39i)T |
good | 2 | 1+1.90T+2T2 |
| 3 | 1+(−0.214−0.371i)T+(−1.5+2.59i)T2 |
| 5 | 1+(0.736+1.27i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2.19−3.80i)T+(−5.5+9.52i)T2 |
| 17 | 1−1.20T+17T2 |
| 19 | 1+(−1.62+2.80i)T+(−9.5−16.4i)T2 |
| 23 | 1+4.43T+23T2 |
| 29 | 1+(0.0837−0.145i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−2.62+4.54i)T+(−15.5−26.8i)T2 |
| 37 | 1−7.05T+37T2 |
| 41 | 1+(−2.58+4.47i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.0113+0.0197i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−5.84−10.1i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−0.0708+0.122i)T+(−26.5−45.8i)T2 |
| 59 | 1−5.34T+59T2 |
| 61 | 1+(−5.77+9.99i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.06+3.58i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−4.98−8.63i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−7.62+13.1i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.387+0.670i)T+(−39.5+68.4i)T2 |
| 83 | 1−16.0T+83T2 |
| 89 | 1+6.55T+89T2 |
| 97 | 1+(−1.74−3.02i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01825089649615216348260010088, −9.543687523807550204171028763281, −9.074059497492519170512900797581, −7.995822395142424096115357289495, −7.26454040672391785057778040010, −6.43297120665741401742128476786, −4.68533012903465507393063992099, −4.11072420633955706857468804404, −2.18762863127060956220944978898, −0.811997872974530704723468565031,
1.06037455747608530093793971085, 2.52479101997313739219425835019, 3.86071348566735309624975574246, 5.28438768790229430177068411622, 6.55954873074569235649931196735, 7.51138206892934270889990625400, 7.993593341207264705586625776028, 8.807797872724497893207643247131, 9.890260707294501151215251783050, 10.39224013085585195437956401213