L(s) = 1 | + 1.55·2-s + (−0.244 − 0.423i)3-s + 0.417·4-s + (−0.595 − 1.03i)5-s + (−0.380 − 0.658i)6-s − 2.46·8-s + (1.38 − 2.39i)9-s + (−0.926 − 1.60i)10-s + (−1.05 − 1.83i)11-s + (−0.102 − 0.176i)12-s + (−2.86 − 2.19i)13-s + (−0.291 + 0.504i)15-s − 4.66·16-s + 0.906·17-s + (2.14 − 3.71i)18-s + (3.34 − 5.79i)19-s + ⋯ |
L(s) = 1 | + 1.09·2-s + (−0.141 − 0.244i)3-s + 0.208·4-s + (−0.266 − 0.461i)5-s + (−0.155 − 0.268i)6-s − 0.870·8-s + (0.460 − 0.796i)9-s + (−0.292 − 0.507i)10-s + (−0.319 − 0.552i)11-s + (−0.0294 − 0.0510i)12-s + (−0.793 − 0.608i)13-s + (−0.0752 + 0.130i)15-s − 1.16·16-s + 0.219·17-s + (0.505 − 0.876i)18-s + (0.767 − 1.32i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.268+0.963i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.268+0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.268+0.963i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(165,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.268+0.963i)
|
Particular Values
L(1) |
≈ |
1.05059−1.38367i |
L(21) |
≈ |
1.05059−1.38367i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(2.86+2.19i)T |
good | 2 | 1−1.55T+2T2 |
| 3 | 1+(0.244+0.423i)T+(−1.5+2.59i)T2 |
| 5 | 1+(0.595+1.03i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.05+1.83i)T+(−5.5+9.52i)T2 |
| 17 | 1−0.906T+17T2 |
| 19 | 1+(−3.34+5.79i)T+(−9.5−16.4i)T2 |
| 23 | 1−3.59T+23T2 |
| 29 | 1+(4.25−7.37i)T+(−14.5−25.1i)T2 |
| 31 | 1+(2.64−4.57i)T+(−15.5−26.8i)T2 |
| 37 | 1−4.99T+37T2 |
| 41 | 1+(−0.768+1.33i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2.71+4.70i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.59+2.75i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.41+2.44i)T+(−26.5−45.8i)T2 |
| 59 | 1−10.2T+59T2 |
| 61 | 1+(4.13−7.16i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.87−3.24i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−1.26−2.19i)T+(−35.5+61.4i)T2 |
| 73 | 1+(2.86−4.96i)T+(−36.5−63.2i)T2 |
| 79 | 1+(3.03+5.25i)T+(−39.5+68.4i)T2 |
| 83 | 1−11.6T+83T2 |
| 89 | 1−17.7T+89T2 |
| 97 | 1+(−3.10−5.37i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46486232191646506085354736734, −9.299045005104852698129239204665, −8.730845689736413346798672044120, −7.40500887817173082708220923635, −6.64391923467102880203191589847, −5.39645820829989256143748470615, −4.94774256411562402689407929659, −3.72153108531731210608303627082, −2.83753304758176781872754146496, −0.67884128888582850562125857081,
2.19552020756986417624906489263, 3.45383237494748981207863400597, 4.41442896698131473722950264766, 5.14063902093025445240801740250, 6.06752245710807649410161224535, 7.28220558239053534132761585925, 7.88465878733558393149803126249, 9.431419963703301765679049554934, 9.907021761462274089912152266783, 11.08922256377407350331294049988