L(s) = 1 | + (0.134 − 0.232i)2-s + 1.14·3-s + (0.964 + 1.66i)4-s + (−1.28 − 2.21i)5-s + (0.153 − 0.265i)6-s + 1.05·8-s − 1.69·9-s − 0.686·10-s + 3.94·11-s + (1.10 + 1.90i)12-s + (3.15 + 1.74i)13-s + (−1.46 − 2.53i)15-s + (−1.78 + 3.09i)16-s + (0.392 + 0.679i)17-s + (−0.227 + 0.393i)18-s + 7.49·19-s + ⋯ |
L(s) = 1 | + (0.0947 − 0.164i)2-s + 0.659·3-s + (0.482 + 0.834i)4-s + (−0.572 − 0.992i)5-s + (0.0625 − 0.108i)6-s + 0.372·8-s − 0.564·9-s − 0.217·10-s + 1.18·11-s + (0.318 + 0.550i)12-s + (0.874 + 0.484i)13-s + (−0.378 − 0.654i)15-s + (−0.446 + 0.773i)16-s + (0.0952 + 0.164i)17-s + (−0.0535 + 0.0926i)18-s + 1.71·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10256 - 0.116852i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10256 - 0.116852i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.15 - 1.74i)T \) |
good | 2 | \( 1 + (-0.134 + 0.232i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 - 1.14T + 3T^{2} \) |
| 5 | \( 1 + (1.28 + 2.21i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 - 3.94T + 11T^{2} \) |
| 17 | \( 1 + (-0.392 - 0.679i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 7.49T + 19T^{2} \) |
| 23 | \( 1 + (-3.97 + 6.88i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.17 + 2.03i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.27 - 2.21i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.37 - 5.85i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.21 + 2.11i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.12 + 1.94i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.658 - 1.14i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.63 - 8.03i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.48 + 7.76i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 9.44T + 61T^{2} \) |
| 67 | \( 1 + 1.35T + 67T^{2} \) |
| 71 | \( 1 + (6.15 - 10.6i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.384 + 0.665i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.09 + 5.36i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 1.07T + 83T^{2} \) |
| 89 | \( 1 + (-3.83 + 6.63i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.18 - 2.05i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79705862303205479255916628044, −9.267991484368935091323252530342, −8.768593540217079824458690079728, −8.146541540915947626765274099141, −7.20778509067091064825312967349, −6.18031554966600123735391862101, −4.72354286717446626936206168784, −3.77938695102700815279686275971, −2.99022730877226756757896403161, −1.39073571632842701878859956515,
1.41306680102806652831764531541, 3.04274769886717482463794801712, 3.60753819574254890310851901149, 5.31341062796277158378853398467, 6.13791271734633170549377549826, 7.17342794707318778613847795629, 7.68479973598498888600173975747, 9.033875640800908777216968937787, 9.589601312280158847178103287551, 10.79425901372035853135569831530