L(s) = 1 | + (0.134 − 0.232i)2-s + 1.14·3-s + (0.964 + 1.66i)4-s + (−1.28 − 2.21i)5-s + (0.153 − 0.265i)6-s + 1.05·8-s − 1.69·9-s − 0.686·10-s + 3.94·11-s + (1.10 + 1.90i)12-s + (3.15 + 1.74i)13-s + (−1.46 − 2.53i)15-s + (−1.78 + 3.09i)16-s + (0.392 + 0.679i)17-s + (−0.227 + 0.393i)18-s + 7.49·19-s + ⋯ |
L(s) = 1 | + (0.0947 − 0.164i)2-s + 0.659·3-s + (0.482 + 0.834i)4-s + (−0.572 − 0.992i)5-s + (0.0625 − 0.108i)6-s + 0.372·8-s − 0.564·9-s − 0.217·10-s + 1.18·11-s + (0.318 + 0.550i)12-s + (0.874 + 0.484i)13-s + (−0.378 − 0.654i)15-s + (−0.446 + 0.773i)16-s + (0.0952 + 0.164i)17-s + (−0.0535 + 0.0926i)18-s + 1.71·19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.993+0.110i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.993+0.110i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.993+0.110i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.993+0.110i)
|
Particular Values
L(1) |
≈ |
2.10256−0.116852i |
L(21) |
≈ |
2.10256−0.116852i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−3.15−1.74i)T |
good | 2 | 1+(−0.134+0.232i)T+(−1−1.73i)T2 |
| 3 | 1−1.14T+3T2 |
| 5 | 1+(1.28+2.21i)T+(−2.5+4.33i)T2 |
| 11 | 1−3.94T+11T2 |
| 17 | 1+(−0.392−0.679i)T+(−8.5+14.7i)T2 |
| 19 | 1−7.49T+19T2 |
| 23 | 1+(−3.97+6.88i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.17+2.03i)T+(−14.5+25.1i)T2 |
| 31 | 1+(1.27−2.21i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3.37−5.85i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.21+2.11i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1.12+1.94i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.658−1.14i)T+(−23.5+40.7i)T2 |
| 53 | 1+(4.63−8.03i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.48+7.76i)T+(−29.5+51.0i)T2 |
| 61 | 1+9.44T+61T2 |
| 67 | 1+1.35T+67T2 |
| 71 | 1+(6.15−10.6i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−0.384+0.665i)T+(−36.5−63.2i)T2 |
| 79 | 1+(3.09+5.36i)T+(−39.5+68.4i)T2 |
| 83 | 1−1.07T+83T2 |
| 89 | 1+(−3.83+6.63i)T+(−44.5−77.0i)T2 |
| 97 | 1+(1.18−2.05i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79705862303205479255916628044, −9.267991484368935091323252530342, −8.768593540217079824458690079728, −8.146541540915947626765274099141, −7.20778509067091064825312967349, −6.18031554966600123735391862101, −4.72354286717446626936206168784, −3.77938695102700815279686275971, −2.99022730877226756757896403161, −1.39073571632842701878859956515,
1.41306680102806652831764531541, 3.04274769886717482463794801712, 3.60753819574254890310851901149, 5.31341062796277158378853398467, 6.13791271734633170549377549826, 7.17342794707318778613847795629, 7.68479973598498888600173975747, 9.033875640800908777216968937787, 9.589601312280158847178103287551, 10.79425901372035853135569831530