Properties

Label 2-640-1.1-c1-0-5
Degree $2$
Conductor $640$
Sign $1$
Analytic cond. $5.11042$
Root an. cond. $2.26062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 9-s + 2·11-s + 2·13-s − 2·15-s + 6·17-s + 6·19-s + 25-s − 4·27-s + 10·29-s − 8·31-s + 4·33-s + 2·37-s + 4·39-s − 6·41-s − 2·43-s − 45-s − 12·47-s − 7·49-s + 12·51-s + 10·53-s − 2·55-s + 12·57-s − 6·59-s − 6·61-s − 2·65-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1/3·9-s + 0.603·11-s + 0.554·13-s − 0.516·15-s + 1.45·17-s + 1.37·19-s + 1/5·25-s − 0.769·27-s + 1.85·29-s − 1.43·31-s + 0.696·33-s + 0.328·37-s + 0.640·39-s − 0.937·41-s − 0.304·43-s − 0.149·45-s − 1.75·47-s − 49-s + 1.68·51-s + 1.37·53-s − 0.269·55-s + 1.58·57-s − 0.781·59-s − 0.768·61-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(640\)    =    \(2^{7} \cdot 5\)
Sign: $1$
Analytic conductor: \(5.11042\)
Root analytic conductor: \(2.26062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.146865549\)
\(L(\frac12)\) \(\approx\) \(2.146865549\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 10 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39102304097340406960115303065, −9.546865557077499447722022189862, −8.785640940627923079947670161672, −8.003973673628002575380076993759, −7.34544995247272548117733891306, −6.13680123590138963079680336084, −4.93901359493313369458876428491, −3.56314650163491707611542821048, −3.10625138730091820603192538278, −1.41580456294010257565810162991, 1.41580456294010257565810162991, 3.10625138730091820603192538278, 3.56314650163491707611542821048, 4.93901359493313369458876428491, 6.13680123590138963079680336084, 7.34544995247272548117733891306, 8.003973673628002575380076993759, 8.785640940627923079947670161672, 9.546865557077499447722022189862, 10.39102304097340406960115303065

Graph of the $Z$-function along the critical line