L(s) = 1 | + (0.810 − 1.15i)2-s + (−1.01 + 0.542i)3-s + (−0.685 − 1.87i)4-s + (0.634 + 0.773i)5-s + (−0.194 + 1.61i)6-s + (−1.73 + 1.15i)7-s + (−2.73 − 0.728i)8-s + (−0.930 + 1.39i)9-s + (1.41 − 0.108i)10-s + (−0.0953 + 0.0289i)11-s + (1.71 + 1.53i)12-s + (5.37 + 4.40i)13-s + (−0.0631 + 2.94i)14-s + (−1.06 − 0.440i)15-s + (−3.06 + 2.57i)16-s + (2.51 − 1.04i)17-s + ⋯ |
L(s) = 1 | + (0.573 − 0.819i)2-s + (−0.586 + 0.313i)3-s + (−0.342 − 0.939i)4-s + (0.283 + 0.345i)5-s + (−0.0792 + 0.659i)6-s + (−0.655 + 0.438i)7-s + (−0.966 − 0.257i)8-s + (−0.310 + 0.464i)9-s + (0.445 − 0.0342i)10-s + (−0.0287 + 0.00871i)11-s + (0.495 + 0.443i)12-s + (1.48 + 1.22i)13-s + (−0.0168 + 0.788i)14-s + (−0.274 − 0.113i)15-s + (−0.765 + 0.644i)16-s + (0.609 − 0.252i)17-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(0.832−0.553i)Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)(0.832−0.553i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
0.832−0.553i
|
Analytic conductor: |
5.11042 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 640, ( :1/2), 0.832−0.553i)
|
Particular Values
L(1) |
≈ |
1.24949+0.377234i |
L(21) |
≈ |
1.24949+0.377234i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.810+1.15i)T |
| 5 | 1+(−0.634−0.773i)T |
good | 3 | 1+(1.01−0.542i)T+(1.66−2.49i)T2 |
| 7 | 1+(1.73−1.15i)T+(2.67−6.46i)T2 |
| 11 | 1+(0.0953−0.0289i)T+(9.14−6.11i)T2 |
| 13 | 1+(−5.37−4.40i)T+(2.53+12.7i)T2 |
| 17 | 1+(−2.51+1.04i)T+(12.0−12.0i)T2 |
| 19 | 1+(−0.383−3.89i)T+(−18.6+3.70i)T2 |
| 23 | 1+(3.00−0.597i)T+(21.2−8.80i)T2 |
| 29 | 1+(0.430−1.41i)T+(−24.1−16.1i)T2 |
| 31 | 1+(−5.84−5.84i)T+31iT2 |
| 37 | 1+(2.21+0.217i)T+(36.2+7.21i)T2 |
| 41 | 1+(−0.994−5.00i)T+(−37.8+15.6i)T2 |
| 43 | 1+(1.07+0.575i)T+(23.8+35.7i)T2 |
| 47 | 1+(2.33+5.64i)T+(−33.2+33.2i)T2 |
| 53 | 1+(−0.222−0.735i)T+(−44.0+29.4i)T2 |
| 59 | 1+(1.01−0.834i)T+(11.5−57.8i)T2 |
| 61 | 1+(0.862+1.61i)T+(−33.8+50.7i)T2 |
| 67 | 1+(5.00+9.36i)T+(−37.2+55.7i)T2 |
| 71 | 1+(−5.05−7.56i)T+(−27.1+65.5i)T2 |
| 73 | 1+(−5.49−3.67i)T+(27.9+67.4i)T2 |
| 79 | 1+(−2.09+5.06i)T+(−55.8−55.8i)T2 |
| 83 | 1+(15.0−1.48i)T+(81.4−16.1i)T2 |
| 89 | 1+(−16.6−3.32i)T+(82.2+34.0i)T2 |
| 97 | 1+(1.75+1.75i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70480417095886657836412210777, −10.08217784549266112877502887440, −9.243536216453658149083521763566, −8.276825171188891440778533131956, −6.54855652653108119253120387214, −6.02937026288434087591531708453, −5.15196300984626270074787929381, −3.98414766739014511395968669312, −3.00649930559450576097158803600, −1.63896042412214901026510654484,
0.65944206455715671137956963354, 3.06336068583343485566466627311, 3.97574173222806785981851880152, 5.32919027667094336240936447115, 6.05305873500612835916192502446, 6.57053569823920268681155373012, 7.74852436086061859810682514203, 8.536762938447101420382479227955, 9.482755452473597566984167270328, 10.55656981000154771360639880357