L(s) = 1 | + (0.823 − 1.15i)2-s + (1.18 + 0.635i)3-s + (−0.645 − 1.89i)4-s + (−0.634 + 0.773i)5-s + (1.70 − 0.843i)6-s + (−4.07 − 2.72i)7-s + (−2.70 − 0.815i)8-s + (−0.658 − 0.985i)9-s + (0.366 + 1.36i)10-s + (−5.20 − 1.57i)11-s + (0.435 − 2.65i)12-s + (3.21 − 2.63i)13-s + (−6.48 + 2.44i)14-s + (−1.24 + 0.515i)15-s + (−3.16 + 2.44i)16-s + (3.95 + 1.64i)17-s + ⋯ |
L(s) = 1 | + (0.581 − 0.813i)2-s + (0.686 + 0.366i)3-s + (−0.322 − 0.946i)4-s + (−0.283 + 0.345i)5-s + (0.697 − 0.344i)6-s + (−1.53 − 1.02i)7-s + (−0.957 − 0.288i)8-s + (−0.219 − 0.328i)9-s + (0.116 + 0.431i)10-s + (−1.56 − 0.476i)11-s + (0.125 − 0.767i)12-s + (0.891 − 0.731i)13-s + (−1.73 + 0.653i)14-s + (−0.321 + 0.133i)15-s + (−0.791 + 0.610i)16-s + (0.960 + 0.397i)17-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(−0.976+0.215i)Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)(−0.976+0.215i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
−0.976+0.215i
|
Analytic conductor: |
5.11042 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(621,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 640, ( :1/2), −0.976+0.215i)
|
Particular Values
L(1) |
≈ |
0.133329−1.22255i |
L(21) |
≈ |
0.133329−1.22255i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.823+1.15i)T |
| 5 | 1+(0.634−0.773i)T |
good | 3 | 1+(−1.18−0.635i)T+(1.66+2.49i)T2 |
| 7 | 1+(4.07+2.72i)T+(2.67+6.46i)T2 |
| 11 | 1+(5.20+1.57i)T+(9.14+6.11i)T2 |
| 13 | 1+(−3.21+2.63i)T+(2.53−12.7i)T2 |
| 17 | 1+(−3.95−1.64i)T+(12.0+12.0i)T2 |
| 19 | 1+(0.725−7.36i)T+(−18.6−3.70i)T2 |
| 23 | 1+(0.125+0.0249i)T+(21.2+8.80i)T2 |
| 29 | 1+(0.673+2.21i)T+(−24.1+16.1i)T2 |
| 31 | 1+(−6.08+6.08i)T−31iT2 |
| 37 | 1+(2.21−0.217i)T+(36.2−7.21i)T2 |
| 41 | 1+(−2.29+11.5i)T+(−37.8−15.6i)T2 |
| 43 | 1+(1.39−0.745i)T+(23.8−35.7i)T2 |
| 47 | 1+(−2.64+6.39i)T+(−33.2−33.2i)T2 |
| 53 | 1+(−1.26+4.17i)T+(−44.0−29.4i)T2 |
| 59 | 1+(1.98+1.62i)T+(11.5+57.8i)T2 |
| 61 | 1+(0.230−0.431i)T+(−33.8−50.7i)T2 |
| 67 | 1+(4.49−8.40i)T+(−37.2−55.7i)T2 |
| 71 | 1+(−3.72+5.57i)T+(−27.1−65.5i)T2 |
| 73 | 1+(−3.99+2.67i)T+(27.9−67.4i)T2 |
| 79 | 1+(2.35+5.69i)T+(−55.8+55.8i)T2 |
| 83 | 1+(6.14+0.605i)T+(81.4+16.1i)T2 |
| 89 | 1+(2.48−0.494i)T+(82.2−34.0i)T2 |
| 97 | 1+(1.35−1.35i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28010006349828799301153543596, −9.777040220500500792859341644845, −8.503806691494550901997262566078, −7.68478297833541464014902334665, −6.22614288097513270996430455462, −5.67447187367798370110536679174, −3.82468646294150955989788406262, −3.57380600132465621610164205031, −2.70384711750067323790100521499, −0.48101149615792726524400469515,
2.70263923327728635300213512438, 3.10061309992106238358794899013, 4.72136070917921146273347353691, 5.55895532031661480005499963756, 6.57063464432237178493167061170, 7.39832742693370488501814966539, 8.343927097388516228014576851229, 8.922340875272599660743467386861, 9.736771426986255949513466332547, 11.14858746639544451352611397790