L(s) = 1 | + (0.415 − 0.909i)2-s + (−0.654 − 0.755i)4-s + (−0.142 − 0.989i)7-s + (−0.959 + 0.281i)8-s + (−0.841 + 0.540i)9-s + (0.797 − 1.74i)11-s + (−0.959 − 0.281i)14-s + (−0.142 + 0.989i)16-s + (0.142 + 0.989i)18-s + (−1.25 − 1.45i)22-s + (0.841 + 0.540i)23-s + (−0.415 − 0.909i)25-s + (−0.654 + 0.755i)28-s + (0.544 + 0.627i)29-s + (0.841 + 0.540i)32-s + ⋯ |
L(s) = 1 | + (0.415 − 0.909i)2-s + (−0.654 − 0.755i)4-s + (−0.142 − 0.989i)7-s + (−0.959 + 0.281i)8-s + (−0.841 + 0.540i)9-s + (0.797 − 1.74i)11-s + (−0.959 − 0.281i)14-s + (−0.142 + 0.989i)16-s + (0.142 + 0.989i)18-s + (−1.25 − 1.45i)22-s + (0.841 + 0.540i)23-s + (−0.415 − 0.909i)25-s + (−0.654 + 0.755i)28-s + (0.544 + 0.627i)29-s + (0.841 + 0.540i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.529 + 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.529 + 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9850051612\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9850051612\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.415 + 0.909i)T \) |
| 7 | \( 1 + (0.142 + 0.989i)T \) |
| 23 | \( 1 + (-0.841 - 0.540i)T \) |
good | 3 | \( 1 + (0.841 - 0.540i)T^{2} \) |
| 5 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 11 | \( 1 + (-0.797 + 1.74i)T + (-0.654 - 0.755i)T^{2} \) |
| 13 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 17 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 19 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 29 | \( 1 + (-0.544 - 0.627i)T + (-0.142 + 0.989i)T^{2} \) |
| 31 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 37 | \( 1 + (-1.07 - 1.66i)T + (-0.415 + 0.909i)T^{2} \) |
| 41 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 43 | \( 1 + (1.61 - 0.474i)T + (0.841 - 0.540i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-1.80 + 0.258i)T + (0.959 - 0.281i)T^{2} \) |
| 59 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 61 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 67 | \( 1 + (-0.544 - 1.19i)T + (-0.654 + 0.755i)T^{2} \) |
| 71 | \( 1 + (0.512 - 0.234i)T + (0.654 - 0.755i)T^{2} \) |
| 73 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 79 | \( 1 + (-0.118 + 0.822i)T + (-0.959 - 0.281i)T^{2} \) |
| 83 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 89 | \( 1 + (0.841 - 0.540i)T^{2} \) |
| 97 | \( 1 + (0.415 + 0.909i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65005074931358341455777410872, −9.891580955553663883073734294284, −8.768929181933916847063220236839, −8.198153462684166395386053044625, −6.66510200925045803854925561058, −5.83180212842871502472985087568, −4.77824658379035188934302503157, −3.64404626424773992238246294477, −2.88183659367968222508277016615, −1.08004331203658287825591957941,
2.42369779876652084127450154494, 3.71618036351885657688916811097, 4.81140634409601470531903045501, 5.72523856898641476924216991420, 6.57937541216715488396747831001, 7.35228117955439277874615288438, 8.495904321791663914227333439117, 9.191632722208906186421657152727, 9.776890057750255362141784989751, 11.38996316291292910691842521835