L(s) = 1 | + (0.415 − 0.909i)2-s + (−0.654 − 0.755i)4-s + (−0.142 − 0.989i)7-s + (−0.959 + 0.281i)8-s + (−0.841 + 0.540i)9-s + (0.797 − 1.74i)11-s + (−0.959 − 0.281i)14-s + (−0.142 + 0.989i)16-s + (0.142 + 0.989i)18-s + (−1.25 − 1.45i)22-s + (0.841 + 0.540i)23-s + (−0.415 − 0.909i)25-s + (−0.654 + 0.755i)28-s + (0.544 + 0.627i)29-s + (0.841 + 0.540i)32-s + ⋯ |
L(s) = 1 | + (0.415 − 0.909i)2-s + (−0.654 − 0.755i)4-s + (−0.142 − 0.989i)7-s + (−0.959 + 0.281i)8-s + (−0.841 + 0.540i)9-s + (0.797 − 1.74i)11-s + (−0.959 − 0.281i)14-s + (−0.142 + 0.989i)16-s + (0.142 + 0.989i)18-s + (−1.25 − 1.45i)22-s + (0.841 + 0.540i)23-s + (−0.415 − 0.909i)25-s + (−0.654 + 0.755i)28-s + (0.544 + 0.627i)29-s + (0.841 + 0.540i)32-s + ⋯ |
Λ(s)=(=(644s/2ΓC(s)L(s)(−0.529+0.848i)Λ(1−s)
Λ(s)=(=(644s/2ΓC(s)L(s)(−0.529+0.848i)Λ(1−s)
Degree: |
2 |
Conductor: |
644
= 22⋅7⋅23
|
Sign: |
−0.529+0.848i
|
Analytic conductor: |
0.321397 |
Root analytic conductor: |
0.566919 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ644(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 644, ( :0), −0.529+0.848i)
|
Particular Values
L(21) |
≈ |
0.9850051612 |
L(21) |
≈ |
0.9850051612 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.415+0.909i)T |
| 7 | 1+(0.142+0.989i)T |
| 23 | 1+(−0.841−0.540i)T |
good | 3 | 1+(0.841−0.540i)T2 |
| 5 | 1+(0.415+0.909i)T2 |
| 11 | 1+(−0.797+1.74i)T+(−0.654−0.755i)T2 |
| 13 | 1+(0.959+0.281i)T2 |
| 17 | 1+(−0.142+0.989i)T2 |
| 19 | 1+(0.142+0.989i)T2 |
| 29 | 1+(−0.544−0.627i)T+(−0.142+0.989i)T2 |
| 31 | 1+(0.841+0.540i)T2 |
| 37 | 1+(−1.07−1.66i)T+(−0.415+0.909i)T2 |
| 41 | 1+(−0.415−0.909i)T2 |
| 43 | 1+(1.61−0.474i)T+(0.841−0.540i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−1.80+0.258i)T+(0.959−0.281i)T2 |
| 59 | 1+(−0.959−0.281i)T2 |
| 61 | 1+(0.841+0.540i)T2 |
| 67 | 1+(−0.544−1.19i)T+(−0.654+0.755i)T2 |
| 71 | 1+(0.512−0.234i)T+(0.654−0.755i)T2 |
| 73 | 1+(0.142+0.989i)T2 |
| 79 | 1+(−0.118+0.822i)T+(−0.959−0.281i)T2 |
| 83 | 1+(−0.415+0.909i)T2 |
| 89 | 1+(0.841−0.540i)T2 |
| 97 | 1+(0.415+0.909i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65005074931358341455777410872, −9.891580955553663883073734294284, −8.768929181933916847063220236839, −8.198153462684166395386053044625, −6.66510200925045803854925561058, −5.83180212842871502472985087568, −4.77824658379035188934302503157, −3.64404626424773992238246294477, −2.88183659367968222508277016615, −1.08004331203658287825591957941,
2.42369779876652084127450154494, 3.71618036351885657688916811097, 4.81140634409601470531903045501, 5.72523856898641476924216991420, 6.57937541216715488396747831001, 7.35228117955439277874615288438, 8.495904321791663914227333439117, 9.191632722208906186421657152727, 9.776890057750255362141784989751, 11.38996316291292910691842521835