L(s) = 1 | + (0.841 − 0.540i)2-s + (0.415 − 0.909i)4-s + (−0.654 + 0.755i)7-s + (−0.142 − 0.989i)8-s + (0.959 − 0.281i)9-s + (0.239 − 0.153i)11-s + (−0.142 + 0.989i)14-s + (−0.654 − 0.755i)16-s + (0.654 − 0.755i)18-s + (0.118 − 0.258i)22-s + (−0.959 − 0.281i)23-s + (−0.841 − 0.540i)25-s + (0.415 + 0.909i)28-s + (−0.698 + 1.53i)29-s + (−0.959 − 0.281i)32-s + ⋯ |
L(s) = 1 | + (0.841 − 0.540i)2-s + (0.415 − 0.909i)4-s + (−0.654 + 0.755i)7-s + (−0.142 − 0.989i)8-s + (0.959 − 0.281i)9-s + (0.239 − 0.153i)11-s + (−0.142 + 0.989i)14-s + (−0.654 − 0.755i)16-s + (0.654 − 0.755i)18-s + (0.118 − 0.258i)22-s + (−0.959 − 0.281i)23-s + (−0.841 − 0.540i)25-s + (0.415 + 0.909i)28-s + (−0.698 + 1.53i)29-s + (−0.959 − 0.281i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.603 + 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.603 + 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.426212687\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.426212687\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.841 + 0.540i)T \) |
| 7 | \( 1 + (0.654 - 0.755i)T \) |
| 23 | \( 1 + (0.959 + 0.281i)T \) |
good | 3 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 5 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 11 | \( 1 + (-0.239 + 0.153i)T + (0.415 - 0.909i)T^{2} \) |
| 13 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 17 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 19 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 29 | \( 1 + (0.698 - 1.53i)T + (-0.654 - 0.755i)T^{2} \) |
| 31 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 37 | \( 1 + (-0.425 - 1.45i)T + (-0.841 + 0.540i)T^{2} \) |
| 41 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 43 | \( 1 + (-0.273 - 1.89i)T + (-0.959 + 0.281i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.817 + 0.708i)T + (0.142 + 0.989i)T^{2} \) |
| 59 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 61 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 67 | \( 1 + (0.698 + 0.449i)T + (0.415 + 0.909i)T^{2} \) |
| 71 | \( 1 + (-1.07 + 1.66i)T + (-0.415 - 0.909i)T^{2} \) |
| 73 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 79 | \( 1 + (-1.10 - 1.27i)T + (-0.142 + 0.989i)T^{2} \) |
| 83 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 89 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 97 | \( 1 + (0.841 + 0.540i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72869189528752176476262576347, −9.790095331077183246732334318377, −9.346896719593310270676999816702, −7.982255642059685181861509489900, −6.67661229051591541463817605022, −6.16439433008079971530569168618, −5.02818209323460077533481917708, −3.99550467749531639950049967792, −3.02464921740565158653968290842, −1.70321731499122355163687785107,
2.13638851526052235030581545632, 3.78017519468288730713362677628, 4.18210096799366597931473876415, 5.53159195079931390018441952677, 6.40855376916982194746710992602, 7.38028101660177667425654918050, 7.78503816095351405743086324151, 9.222557338681238592414041832958, 10.04966148117687477186386969782, 10.98159086231213536672194083891