L(s) = 1 | + (−0.959 − 0.281i)2-s + (0.841 + 0.540i)4-s + (0.415 − 0.909i)7-s + (−0.654 − 0.755i)8-s + (0.142 − 0.989i)9-s + (−1.25 − 0.368i)11-s + (−0.654 + 0.755i)14-s + (0.415 + 0.909i)16-s + (−0.415 + 0.909i)18-s + (1.10 + 0.708i)22-s + (−0.142 − 0.989i)23-s + (0.959 − 0.281i)25-s + (0.841 − 0.540i)28-s + (1.61 + 1.03i)29-s + (−0.142 − 0.989i)32-s + ⋯ |
L(s) = 1 | + (−0.959 − 0.281i)2-s + (0.841 + 0.540i)4-s + (0.415 − 0.909i)7-s + (−0.654 − 0.755i)8-s + (0.142 − 0.989i)9-s + (−1.25 − 0.368i)11-s + (−0.654 + 0.755i)14-s + (0.415 + 0.909i)16-s + (−0.415 + 0.909i)18-s + (1.10 + 0.708i)22-s + (−0.142 − 0.989i)23-s + (0.959 − 0.281i)25-s + (0.841 − 0.540i)28-s + (1.61 + 1.03i)29-s + (−0.142 − 0.989i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.264 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.264 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5942116449\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5942116449\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.959 + 0.281i)T \) |
| 7 | \( 1 + (-0.415 + 0.909i)T \) |
| 23 | \( 1 + (0.142 + 0.989i)T \) |
good | 3 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 5 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 11 | \( 1 + (1.25 + 0.368i)T + (0.841 + 0.540i)T^{2} \) |
| 13 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 17 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 19 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 29 | \( 1 + (-1.61 - 1.03i)T + (0.415 + 0.909i)T^{2} \) |
| 31 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 37 | \( 1 + (1.80 + 0.258i)T + (0.959 + 0.281i)T^{2} \) |
| 41 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 43 | \( 1 + (-0.186 - 0.215i)T + (-0.142 + 0.989i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-0.512 - 0.234i)T + (0.654 + 0.755i)T^{2} \) |
| 59 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 61 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 67 | \( 1 + (-1.61 + 0.474i)T + (0.841 - 0.540i)T^{2} \) |
| 71 | \( 1 + (-0.425 - 1.45i)T + (-0.841 + 0.540i)T^{2} \) |
| 73 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 79 | \( 1 + (-0.797 - 1.74i)T + (-0.654 + 0.755i)T^{2} \) |
| 83 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 89 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 97 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52696370836992454374414825984, −9.932354118120941966285645573318, −8.707709211742382346927890115070, −8.230920724596450959705333601923, −7.11039432300326597836829137168, −6.54168099355989227207048677182, −5.06748611798613211944697357102, −3.73961974253959448435030345153, −2.65817140571111455264899115210, −0.952837224183235232463082720439,
1.89364030733974007384833458832, 2.81111660532146483926635998191, 4.95238390413649211298458676733, 5.46716175919257321744828102898, 6.71276129354884281382858015689, 7.75064148593941228571584239836, 8.231461328071374451410396312424, 9.119497221718384241609565698306, 10.17332689025626757073298149365, 10.65829103679777185514566510482