L(s) = 1 | + (−0.959 − 0.281i)2-s + (0.841 + 0.540i)4-s + (0.415 − 0.909i)7-s + (−0.654 − 0.755i)8-s + (0.142 − 0.989i)9-s + (−1.25 − 0.368i)11-s + (−0.654 + 0.755i)14-s + (0.415 + 0.909i)16-s + (−0.415 + 0.909i)18-s + (1.10 + 0.708i)22-s + (−0.142 − 0.989i)23-s + (0.959 − 0.281i)25-s + (0.841 − 0.540i)28-s + (1.61 + 1.03i)29-s + (−0.142 − 0.989i)32-s + ⋯ |
L(s) = 1 | + (−0.959 − 0.281i)2-s + (0.841 + 0.540i)4-s + (0.415 − 0.909i)7-s + (−0.654 − 0.755i)8-s + (0.142 − 0.989i)9-s + (−1.25 − 0.368i)11-s + (−0.654 + 0.755i)14-s + (0.415 + 0.909i)16-s + (−0.415 + 0.909i)18-s + (1.10 + 0.708i)22-s + (−0.142 − 0.989i)23-s + (0.959 − 0.281i)25-s + (0.841 − 0.540i)28-s + (1.61 + 1.03i)29-s + (−0.142 − 0.989i)32-s + ⋯ |
Λ(s)=(=(644s/2ΓC(s)L(s)(0.264+0.964i)Λ(1−s)
Λ(s)=(=(644s/2ΓC(s)L(s)(0.264+0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
644
= 22⋅7⋅23
|
Sign: |
0.264+0.964i
|
Analytic conductor: |
0.321397 |
Root analytic conductor: |
0.566919 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ644(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 644, ( :0), 0.264+0.964i)
|
Particular Values
L(21) |
≈ |
0.5942116449 |
L(21) |
≈ |
0.5942116449 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.959+0.281i)T |
| 7 | 1+(−0.415+0.909i)T |
| 23 | 1+(0.142+0.989i)T |
good | 3 | 1+(−0.142+0.989i)T2 |
| 5 | 1+(−0.959+0.281i)T2 |
| 11 | 1+(1.25+0.368i)T+(0.841+0.540i)T2 |
| 13 | 1+(0.654−0.755i)T2 |
| 17 | 1+(0.415+0.909i)T2 |
| 19 | 1+(−0.415+0.909i)T2 |
| 29 | 1+(−1.61−1.03i)T+(0.415+0.909i)T2 |
| 31 | 1+(−0.142−0.989i)T2 |
| 37 | 1+(1.80+0.258i)T+(0.959+0.281i)T2 |
| 41 | 1+(0.959−0.281i)T2 |
| 43 | 1+(−0.186−0.215i)T+(−0.142+0.989i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−0.512−0.234i)T+(0.654+0.755i)T2 |
| 59 | 1+(−0.654+0.755i)T2 |
| 61 | 1+(−0.142−0.989i)T2 |
| 67 | 1+(−1.61+0.474i)T+(0.841−0.540i)T2 |
| 71 | 1+(−0.425−1.45i)T+(−0.841+0.540i)T2 |
| 73 | 1+(−0.415+0.909i)T2 |
| 79 | 1+(−0.797−1.74i)T+(−0.654+0.755i)T2 |
| 83 | 1+(0.959+0.281i)T2 |
| 89 | 1+(−0.142+0.989i)T2 |
| 97 | 1+(−0.959+0.281i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52696370836992454374414825984, −9.932354118120941966285645573318, −8.707709211742382346927890115070, −8.230920724596450959705333601923, −7.11039432300326597836829137168, −6.54168099355989227207048677182, −5.06748611798613211944697357102, −3.73961974253959448435030345153, −2.65817140571111455264899115210, −0.952837224183235232463082720439,
1.89364030733974007384833458832, 2.81111660532146483926635998191, 4.95238390413649211298458676733, 5.46716175919257321744828102898, 6.71276129354884281382858015689, 7.75064148593941228571584239836, 8.231461328071374451410396312424, 9.119497221718384241609565698306, 10.17332689025626757073298149365, 10.65829103679777185514566510482