Properties

Label 2-64800-1.1-c1-0-50
Degree $2$
Conductor $64800$
Sign $-1$
Analytic cond. $517.430$
Root an. cond. $22.7471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·11-s + 4·13-s − 3·17-s − 4·19-s − 2·23-s − 2·29-s + 4·31-s − 4·37-s − 10·41-s + 7·43-s + 4·47-s − 7·49-s + 8·53-s − 59-s + 4·61-s − 12·67-s + 14·71-s + 2·73-s + 83-s + 89-s − 17·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.904·11-s + 1.10·13-s − 0.727·17-s − 0.917·19-s − 0.417·23-s − 0.371·29-s + 0.718·31-s − 0.657·37-s − 1.56·41-s + 1.06·43-s + 0.583·47-s − 49-s + 1.09·53-s − 0.130·59-s + 0.512·61-s − 1.46·67-s + 1.66·71-s + 0.234·73-s + 0.109·83-s + 0.105·89-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64800\)    =    \(2^{5} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(517.430\)
Root analytic conductor: \(22.7471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - T + p T^{2} \)
89 \( 1 - T + p T^{2} \)
97 \( 1 + 17 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.38968875559125, −13.95302066876820, −13.47889799378432, −13.07820115148017, −12.42080235209582, −11.92914161338975, −11.49856687387492, −10.84693498177813, −10.59276850935540, −9.885907035889173, −9.291513665446706, −8.807099177673785, −8.384190202210416, −7.922557182717953, −6.959044910541980, −6.724682467292659, −6.138726561217307, −5.638134053117438, −4.869667803334284, −4.174554189536374, −3.856627361052723, −3.170679105047680, −2.303998793141186, −1.709933638037258, −0.9893344904698217, 0, 0.9893344904698217, 1.709933638037258, 2.303998793141186, 3.170679105047680, 3.856627361052723, 4.174554189536374, 4.869667803334284, 5.638134053117438, 6.138726561217307, 6.724682467292659, 6.959044910541980, 7.922557182717953, 8.384190202210416, 8.807099177673785, 9.291513665446706, 9.885907035889173, 10.59276850935540, 10.84693498177813, 11.49856687387492, 11.92914161338975, 12.42080235209582, 13.07820115148017, 13.47889799378432, 13.95302066876820, 14.38968875559125

Graph of the $Z$-function along the critical line