Properties

Label 2-64800-1.1-c1-0-51
Degree $2$
Conductor $64800$
Sign $-1$
Analytic cond. $517.430$
Root an. cond. $22.7471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 3·11-s + 2·13-s − 6·17-s − 5·19-s + 8·23-s + 3·29-s − 5·31-s + 4·37-s − 9·41-s − 4·43-s − 2·47-s + 9·49-s + 3·59-s + 6·61-s + 6·67-s + 5·71-s − 12·77-s − 8·79-s + 6·83-s − 89-s + 8·91-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.904·11-s + 0.554·13-s − 1.45·17-s − 1.14·19-s + 1.66·23-s + 0.557·29-s − 0.898·31-s + 0.657·37-s − 1.40·41-s − 0.609·43-s − 0.291·47-s + 9/7·49-s + 0.390·59-s + 0.768·61-s + 0.733·67-s + 0.593·71-s − 1.36·77-s − 0.900·79-s + 0.658·83-s − 0.105·89-s + 0.838·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64800\)    =    \(2^{5} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(517.430\)
Root analytic conductor: \(22.7471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 6 T + p T^{2} \)
71 \( 1 - 5 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62941757212447, −13.96169231479799, −13.36006944183295, −13.05854295475268, −12.64249815691916, −11.77134332053173, −11.32606562109564, −10.96082030013222, −10.64651176786219, −10.04150446694792, −9.176734841943468, −8.743756765019292, −8.263519269360284, −8.013781180513759, −7.066243726300395, −6.833674400280805, −6.098737350375963, −5.276081293551587, −4.979549523016532, −4.461890372449145, −3.837914432512838, −2.986975914610972, −2.266340578320396, −1.815477301754546, −0.9939884782721783, 0, 0.9939884782721783, 1.815477301754546, 2.266340578320396, 2.986975914610972, 3.837914432512838, 4.461890372449145, 4.979549523016532, 5.276081293551587, 6.098737350375963, 6.833674400280805, 7.066243726300395, 8.013781180513759, 8.263519269360284, 8.743756765019292, 9.176734841943468, 10.04150446694792, 10.64651176786219, 10.96082030013222, 11.32606562109564, 11.77134332053173, 12.64249815691916, 13.05854295475268, 13.36006944183295, 13.96169231479799, 14.62941757212447

Graph of the $Z$-function along the critical line