Properties

Label 2-64800-1.1-c1-0-53
Degree $2$
Conductor $64800$
Sign $-1$
Analytic cond. $517.430$
Root an. cond. $22.7471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s − 2·11-s + 2·13-s + 5·17-s − 2·19-s − 8·23-s − 10·37-s − 3·41-s + 2·43-s − 9·47-s + 2·49-s + 12·53-s − 6·59-s + 2·61-s + 12·67-s + 12·71-s − 13·73-s − 6·77-s − 79-s − 4·83-s + 7·89-s + 6·91-s + 97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.13·7-s − 0.603·11-s + 0.554·13-s + 1.21·17-s − 0.458·19-s − 1.66·23-s − 1.64·37-s − 0.468·41-s + 0.304·43-s − 1.31·47-s + 2/7·49-s + 1.64·53-s − 0.781·59-s + 0.256·61-s + 1.46·67-s + 1.42·71-s − 1.52·73-s − 0.683·77-s − 0.112·79-s − 0.439·83-s + 0.741·89-s + 0.628·91-s + 0.101·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64800\)    =    \(2^{5} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(517.430\)
Root analytic conductor: \(22.7471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 13 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 7 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35720906410047, −14.10270259674807, −13.56649312753488, −12.96284857279840, −12.43131381342055, −11.78366371023441, −11.66994266956723, −10.82159539912518, −10.48274649942577, −10.01036065297914, −9.448268602194141, −8.571946010162535, −8.292433552278649, −7.922272695374461, −7.304417210538045, −6.689892894125800, −5.949754136276323, −5.494452523000389, −5.008739455313877, −4.356646265266708, −3.701039579226852, −3.197435884620142, −2.184761312507507, −1.801751477178448, −1.013948729070745, 0, 1.013948729070745, 1.801751477178448, 2.184761312507507, 3.197435884620142, 3.701039579226852, 4.356646265266708, 5.008739455313877, 5.494452523000389, 5.949754136276323, 6.689892894125800, 7.304417210538045, 7.922272695374461, 8.292433552278649, 8.571946010162535, 9.448268602194141, 10.01036065297914, 10.48274649942577, 10.82159539912518, 11.66994266956723, 11.78366371023441, 12.43131381342055, 12.96284857279840, 13.56649312753488, 14.10270259674807, 14.35720906410047

Graph of the $Z$-function along the critical line