Properties

Label 2-650-1.1-c5-0-45
Degree $2$
Conductor $650$
Sign $1$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 19.2·3-s + 16·4-s − 76.8·6-s + 51.1·7-s − 64·8-s + 126.·9-s + 494.·11-s + 307.·12-s + 169·13-s − 204.·14-s + 256·16-s + 2.36e3·17-s − 506.·18-s − 699.·19-s + 983.·21-s − 1.97e3·22-s + 3.80e3·23-s − 1.23e3·24-s − 676·26-s − 2.23e3·27-s + 818.·28-s + 2.26e3·29-s − 9.08e3·31-s − 1.02e3·32-s + 9.50e3·33-s − 9.45e3·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.23·3-s + 0.5·4-s − 0.872·6-s + 0.394·7-s − 0.353·8-s + 0.520·9-s + 1.23·11-s + 0.616·12-s + 0.277·13-s − 0.279·14-s + 0.250·16-s + 1.98·17-s − 0.368·18-s − 0.444·19-s + 0.486·21-s − 0.871·22-s + 1.50·23-s − 0.436·24-s − 0.196·26-s − 0.590·27-s + 0.197·28-s + 0.499·29-s − 1.69·31-s − 0.176·32-s + 1.51·33-s − 1.40·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.239594569\)
\(L(\frac12)\) \(\approx\) \(3.239594569\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
5 \( 1 \)
13 \( 1 - 169T \)
good3 \( 1 - 19.2T + 243T^{2} \)
7 \( 1 - 51.1T + 1.68e4T^{2} \)
11 \( 1 - 494.T + 1.61e5T^{2} \)
17 \( 1 - 2.36e3T + 1.41e6T^{2} \)
19 \( 1 + 699.T + 2.47e6T^{2} \)
23 \( 1 - 3.80e3T + 6.43e6T^{2} \)
29 \( 1 - 2.26e3T + 2.05e7T^{2} \)
31 \( 1 + 9.08e3T + 2.86e7T^{2} \)
37 \( 1 - 4.48e3T + 6.93e7T^{2} \)
41 \( 1 + 1.24e4T + 1.15e8T^{2} \)
43 \( 1 - 1.25e4T + 1.47e8T^{2} \)
47 \( 1 + 3.60e3T + 2.29e8T^{2} \)
53 \( 1 + 7.54e3T + 4.18e8T^{2} \)
59 \( 1 - 5.00e4T + 7.14e8T^{2} \)
61 \( 1 + 2.47e4T + 8.44e8T^{2} \)
67 \( 1 + 4.37e4T + 1.35e9T^{2} \)
71 \( 1 - 7.60e3T + 1.80e9T^{2} \)
73 \( 1 - 2.16e4T + 2.07e9T^{2} \)
79 \( 1 - 1.03e5T + 3.07e9T^{2} \)
83 \( 1 - 8.03e4T + 3.93e9T^{2} \)
89 \( 1 - 5.93e4T + 5.58e9T^{2} \)
97 \( 1 - 7.34e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.386052843136875448954230395613, −9.031040630806040890852339833700, −8.125042653218812375459479426261, −7.50101419147195880763578107508, −6.49123300356450636589429254814, −5.28156226622721029818777836363, −3.78155342309024774301903675927, −3.09395232492462549755281601555, −1.82559770030333400897496479536, −0.967778186990377222386137072651, 0.967778186990377222386137072651, 1.82559770030333400897496479536, 3.09395232492462549755281601555, 3.78155342309024774301903675927, 5.28156226622721029818777836363, 6.49123300356450636589429254814, 7.50101419147195880763578107508, 8.125042653218812375459479426261, 9.031040630806040890852339833700, 9.386052843136875448954230395613

Graph of the $Z$-function along the critical line