L(s) = 1 | + 4i·2-s − 27.8i·3-s − 16·4-s + 111.·6-s + 240. i·7-s − 64i·8-s − 534.·9-s + 544.·11-s + 446. i·12-s + 169i·13-s − 961.·14-s + 256·16-s − 1.62e3i·17-s − 2.13e3i·18-s + 805.·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.78i·3-s − 0.5·4-s + 1.26·6-s + 1.85i·7-s − 0.353i·8-s − 2.20·9-s + 1.35·11-s + 0.894i·12-s + 0.277i·13-s − 1.31·14-s + 0.250·16-s − 1.36i·17-s − 1.55i·18-s + 0.512·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.9263362496\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9263362496\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 4iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 - 169iT \) |
good | 3 | \( 1 + 27.8iT - 243T^{2} \) |
| 7 | \( 1 - 240. iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 544.T + 1.61e5T^{2} \) |
| 17 | \( 1 + 1.62e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 805.T + 2.47e6T^{2} \) |
| 23 | \( 1 - 373. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 1.50e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 2.20e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.31e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 1.70e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 8.93e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.57e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 4.03e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 4.75e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 3.02e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 3.87e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 1.05e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 1.58e3iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 6.19e3T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.78e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 4.91e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.56e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.524956311768957242913475234189, −8.896905239909599215710969269402, −8.280629677325761355238264163164, −7.20127951100267049300909356070, −6.63239496791459946110249064037, −5.85021607951043054875512808582, −5.08289332738105736889361941602, −3.19164173649020223294758534487, −2.13167017886666208782088399736, −1.15909781236412628448793709589,
0.21259995299307858183629994526, 1.46594533857512208867919898159, 3.34943704491040442423586923119, 3.90278186515915168077896038555, 4.36831362151893778979758398702, 5.51958056086285041228189990275, 6.76966304433440673883208677645, 8.069656389216261919352617882285, 9.012597296138563702460289968973, 9.830973968996764816148190015197