L(s) = 1 | + 2-s + (2 − 2i)3-s + 4-s + (2 − 2i)6-s + 4i·7-s + 8-s − 5i·9-s + (−2 − 2i)11-s + (2 − 2i)12-s + (2 − 3i)13-s + 4i·14-s + 16-s + (3 − 3i)17-s − 5i·18-s + (−2 − 2i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (1.15 − 1.15i)3-s + 0.5·4-s + (0.816 − 0.816i)6-s + 1.51i·7-s + 0.353·8-s − 1.66i·9-s + (−0.603 − 0.603i)11-s + (0.577 − 0.577i)12-s + (0.554 − 0.832i)13-s + 1.06i·14-s + 0.250·16-s + (0.727 − 0.727i)17-s − 1.17i·18-s + (−0.458 − 0.458i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.661 + 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.661 + 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.94270 - 1.32752i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.94270 - 1.32752i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2 + 3i)T \) |
good | 3 | \( 1 + (-2 + 2i)T - 3iT^{2} \) |
| 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + (2 + 2i)T + 11iT^{2} \) |
| 17 | \( 1 + (-3 + 3i)T - 17iT^{2} \) |
| 19 | \( 1 + (2 + 2i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2 - 2i)T + 23iT^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 + (6 - 6i)T - 31iT^{2} \) |
| 37 | \( 1 - 4iT - 37T^{2} \) |
| 41 | \( 1 + (1 - i)T - 41iT^{2} \) |
| 43 | \( 1 + (2 + 2i)T + 43iT^{2} \) |
| 47 | \( 1 - 4iT - 47T^{2} \) |
| 53 | \( 1 + (-1 + i)T - 53iT^{2} \) |
| 59 | \( 1 + (2 - 2i)T - 59iT^{2} \) |
| 61 | \( 1 + 12T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (2 - 2i)T - 71iT^{2} \) |
| 73 | \( 1 + 10T + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 - 8iT - 83T^{2} \) |
| 89 | \( 1 + (-5 + 5i)T - 89iT^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58678052830156172268302830916, −9.149582604927927579105012583059, −8.607476713993641986366879919145, −7.81668272242571049085112115960, −6.93901187287315527112138887520, −5.86941378321270130757415554123, −5.15637704471511326845205558602, −3.12778053219394646716512195739, −2.92726761012816273224139569727, −1.57673875979509692122494613027,
1.98890084549157337313457793293, 3.40244502515591778640501783780, 4.08156166234688855214334650344, 4.63249321518354774566911557141, 6.05102248518211326996855072120, 7.34215368291357507670157760830, 7.955494208720469956249099425281, 9.034890958930216718659071302942, 10.03842060204705412044743419712, 10.45482610981743914304423159499