L(s) = 1 | − 1.93·2-s + 1.74·4-s − 3.68·7-s + 0.491·8-s + 0.318·11-s − 4.18·13-s + 7.12·14-s − 4.44·16-s + 3.17·17-s − 5.87·19-s − 0.616·22-s + 2.50·23-s + 8.10·26-s − 6.42·28-s − 29-s + 2.50·31-s + 7.61·32-s − 6.14·34-s − 7.87·37-s + 11.3·38-s − 8.72·41-s + 10.7·43-s + 0.556·44-s − 4.85·46-s − 11.0·47-s + 6.55·49-s − 7.31·52-s + ⋯ |
L(s) = 1 | − 1.36·2-s + 0.872·4-s − 1.39·7-s + 0.173·8-s + 0.0960·11-s − 1.16·13-s + 1.90·14-s − 1.11·16-s + 0.769·17-s − 1.34·19-s − 0.131·22-s + 0.522·23-s + 1.59·26-s − 1.21·28-s − 0.185·29-s + 0.450·31-s + 1.34·32-s − 1.05·34-s − 1.29·37-s + 1.84·38-s − 1.36·41-s + 1.63·43-s + 0.0838·44-s − 0.715·46-s − 1.61·47-s + 0.936·49-s − 1.01·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2849157258\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2849157258\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 + 1.93T + 2T^{2} \) |
| 7 | \( 1 + 3.68T + 7T^{2} \) |
| 11 | \( 1 - 0.318T + 11T^{2} \) |
| 13 | \( 1 + 4.18T + 13T^{2} \) |
| 17 | \( 1 - 3.17T + 17T^{2} \) |
| 19 | \( 1 + 5.87T + 19T^{2} \) |
| 23 | \( 1 - 2.50T + 23T^{2} \) |
| 31 | \( 1 - 2.50T + 31T^{2} \) |
| 37 | \( 1 + 7.87T + 37T^{2} \) |
| 41 | \( 1 + 8.72T + 41T^{2} \) |
| 43 | \( 1 - 10.7T + 43T^{2} \) |
| 47 | \( 1 + 11.0T + 47T^{2} \) |
| 53 | \( 1 + 8.24T + 53T^{2} \) |
| 59 | \( 1 - 11.3T + 59T^{2} \) |
| 61 | \( 1 + 3.87T + 61T^{2} \) |
| 67 | \( 1 + 7.04T + 67T^{2} \) |
| 71 | \( 1 + 6.24T + 71T^{2} \) |
| 73 | \( 1 - 7.87T + 73T^{2} \) |
| 79 | \( 1 + 4.85T + 79T^{2} \) |
| 83 | \( 1 + 8.37T + 83T^{2} \) |
| 89 | \( 1 - 15.9T + 89T^{2} \) |
| 97 | \( 1 + 11.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.173385257084861133125841336586, −7.32589819081711650475092931469, −6.84216376256346557295278237747, −6.24306926658412308380205356443, −5.21906591939883015519204068482, −4.37922029924548871488388212833, −3.37216249108637899689435483168, −2.57561499579602213445991218715, −1.61003489845502388740085935893, −0.33560787579795909468341585224,
0.33560787579795909468341585224, 1.61003489845502388740085935893, 2.57561499579602213445991218715, 3.37216249108637899689435483168, 4.37922029924548871488388212833, 5.21906591939883015519204068482, 6.24306926658412308380205356443, 6.84216376256346557295278237747, 7.32589819081711650475092931469, 8.173385257084861133125841336586