L(s) = 1 | + 2.43·2-s + 3.94·4-s − 3.59·7-s + 4.75·8-s + 6.58·11-s − 2.25·13-s − 8.77·14-s + 3.69·16-s − 0.256·17-s + 7.95·19-s + 16.0·22-s − 0.961·23-s − 5.50·26-s − 14.2·28-s + 29-s − 3.95·31-s − 0.498·32-s − 0.624·34-s + 3.76·37-s + 19.3·38-s + 5.00·41-s + 6.19·43-s + 26.0·44-s − 2.34·46-s + 7.02·47-s + 5.93·49-s − 8.90·52-s + ⋯ |
L(s) = 1 | + 1.72·2-s + 1.97·4-s − 1.35·7-s + 1.67·8-s + 1.98·11-s − 0.625·13-s − 2.34·14-s + 0.922·16-s − 0.0621·17-s + 1.82·19-s + 3.42·22-s − 0.200·23-s − 1.07·26-s − 2.68·28-s + 0.185·29-s − 0.709·31-s − 0.0881·32-s − 0.107·34-s + 0.619·37-s + 3.14·38-s + 0.781·41-s + 0.945·43-s + 3.92·44-s − 0.345·46-s + 1.02·47-s + 0.848·49-s − 1.23·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.880392272 |
L(21) |
≈ |
5.880392272 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1−2.43T+2T2 |
| 7 | 1+3.59T+7T2 |
| 11 | 1−6.58T+11T2 |
| 13 | 1+2.25T+13T2 |
| 17 | 1+0.256T+17T2 |
| 19 | 1−7.95T+19T2 |
| 23 | 1+0.961T+23T2 |
| 31 | 1+3.95T+31T2 |
| 37 | 1−3.76T+37T2 |
| 41 | 1−5.00T+41T2 |
| 43 | 1−6.19T+43T2 |
| 47 | 1−7.02T+47T2 |
| 53 | 1+6.38T+53T2 |
| 59 | 1+3.19T+59T2 |
| 61 | 1−14.4T+61T2 |
| 67 | 1−9.35T+67T2 |
| 71 | 1+11.9T+71T2 |
| 73 | 1−13.4T+73T2 |
| 79 | 1+5.22T+79T2 |
| 83 | 1+0.195T+83T2 |
| 89 | 1+3.72T+89T2 |
| 97 | 1−2.97T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43328357034537422652993964035, −7.10127228212765051671473877902, −6.31715516608663255864007083989, −5.94134094733814321437273423122, −5.13740710906782927030263719131, −4.23389267909244924575983638435, −3.68011424542833352656275311143, −3.13243776850671181935393376869, −2.26184662368037310433049516375, −0.992921124185419194564028446224,
0.992921124185419194564028446224, 2.26184662368037310433049516375, 3.13243776850671181935393376869, 3.68011424542833352656275311143, 4.23389267909244924575983638435, 5.13740710906782927030263719131, 5.94134094733814321437273423122, 6.31715516608663255864007083989, 7.10127228212765051671473877902, 7.43328357034537422652993964035