Properties

Label 2-6525-1.1-c1-0-107
Degree $2$
Conductor $6525$
Sign $1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 2·7-s + 3·11-s + 4·13-s + 4·14-s − 4·16-s − 2·17-s − 2·19-s + 6·22-s + 5·23-s + 8·26-s + 4·28-s + 29-s + 2·31-s − 8·32-s − 4·34-s + 5·37-s − 4·38-s + 41-s + 43-s + 6·44-s + 10·46-s + 6·47-s − 3·49-s + 8·52-s + 3·53-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.755·7-s + 0.904·11-s + 1.10·13-s + 1.06·14-s − 16-s − 0.485·17-s − 0.458·19-s + 1.27·22-s + 1.04·23-s + 1.56·26-s + 0.755·28-s + 0.185·29-s + 0.359·31-s − 1.41·32-s − 0.685·34-s + 0.821·37-s − 0.648·38-s + 0.156·41-s + 0.152·43-s + 0.904·44-s + 1.47·46-s + 0.875·47-s − 3/7·49-s + 1.10·52-s + 0.412·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.306476599\)
\(L(\frac12)\) \(\approx\) \(5.306476599\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 - T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 7 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.918311564552459896414129871883, −6.99219953777008933414075068338, −6.37793889190286755907620802267, −5.84982517389395981659595838466, −4.99342273522673413054819938011, −4.38244342721143014380994810645, −3.83671545156978843468561546559, −3.00570317852034526630587963516, −2.06295820671583417203795756531, −1.01836719130596143283894004150, 1.01836719130596143283894004150, 2.06295820671583417203795756531, 3.00570317852034526630587963516, 3.83671545156978843468561546559, 4.38244342721143014380994810645, 4.99342273522673413054819938011, 5.84982517389395981659595838466, 6.37793889190286755907620802267, 6.99219953777008933414075068338, 7.918311564552459896414129871883

Graph of the $Z$-function along the critical line