Properties

Label 2-6525-1.1-c1-0-13
Degree $2$
Conductor $6525$
Sign $1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.21·2-s + 2.88·4-s − 1.31·7-s − 1.96·8-s − 4.29·11-s − 2.97·13-s + 2.91·14-s − 1.43·16-s + 0.642·17-s − 5.07·19-s + 9.48·22-s + 8.84·23-s + 6.57·26-s − 3.80·28-s + 29-s − 6.27·31-s + 7.10·32-s − 1.42·34-s + 0.934·37-s + 11.2·38-s − 11.0·41-s + 2.03·43-s − 12.3·44-s − 19.5·46-s + 9.57·47-s − 5.26·49-s − 8.59·52-s + ⋯
L(s)  = 1  − 1.56·2-s + 1.44·4-s − 0.497·7-s − 0.693·8-s − 1.29·11-s − 0.825·13-s + 0.777·14-s − 0.359·16-s + 0.155·17-s − 1.16·19-s + 2.02·22-s + 1.84·23-s + 1.29·26-s − 0.718·28-s + 0.185·29-s − 1.12·31-s + 1.25·32-s − 0.243·34-s + 0.153·37-s + 1.82·38-s − 1.73·41-s + 0.311·43-s − 1.86·44-s − 2.88·46-s + 1.39·47-s − 0.752·49-s − 1.19·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3108301328\)
\(L(\frac12)\) \(\approx\) \(0.3108301328\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 2.21T + 2T^{2} \)
7 \( 1 + 1.31T + 7T^{2} \)
11 \( 1 + 4.29T + 11T^{2} \)
13 \( 1 + 2.97T + 13T^{2} \)
17 \( 1 - 0.642T + 17T^{2} \)
19 \( 1 + 5.07T + 19T^{2} \)
23 \( 1 - 8.84T + 23T^{2} \)
31 \( 1 + 6.27T + 31T^{2} \)
37 \( 1 - 0.934T + 37T^{2} \)
41 \( 1 + 11.0T + 41T^{2} \)
43 \( 1 - 2.03T + 43T^{2} \)
47 \( 1 - 9.57T + 47T^{2} \)
53 \( 1 + 13.0T + 53T^{2} \)
59 \( 1 - 2.55T + 59T^{2} \)
61 \( 1 - 8.46T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 + 5.10T + 71T^{2} \)
73 \( 1 + 16.0T + 73T^{2} \)
79 \( 1 + 3.30T + 79T^{2} \)
83 \( 1 - 5.24T + 83T^{2} \)
89 \( 1 - 5.05T + 89T^{2} \)
97 \( 1 + 2.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.084214920528082389992513022662, −7.38185137562722214846042288431, −7.01089278134334667569510429605, −6.15730940538852303152032400188, −5.19334302910783722460392386525, −4.53871982187785527874185606198, −3.19445895249833723337321642318, −2.53460544967714176890197326784, −1.64012778103215486149588899014, −0.35654533144548996928599311603, 0.35654533144548996928599311603, 1.64012778103215486149588899014, 2.53460544967714176890197326784, 3.19445895249833723337321642318, 4.53871982187785527874185606198, 5.19334302910783722460392386525, 6.15730940538852303152032400188, 7.01089278134334667569510429605, 7.38185137562722214846042288431, 8.084214920528082389992513022662

Graph of the $Z$-function along the critical line