L(s) = 1 | − 2.21·2-s + 2.88·4-s − 1.31·7-s − 1.96·8-s − 4.29·11-s − 2.97·13-s + 2.91·14-s − 1.43·16-s + 0.642·17-s − 5.07·19-s + 9.48·22-s + 8.84·23-s + 6.57·26-s − 3.80·28-s + 29-s − 6.27·31-s + 7.10·32-s − 1.42·34-s + 0.934·37-s + 11.2·38-s − 11.0·41-s + 2.03·43-s − 12.3·44-s − 19.5·46-s + 9.57·47-s − 5.26·49-s − 8.59·52-s + ⋯ |
L(s) = 1 | − 1.56·2-s + 1.44·4-s − 0.497·7-s − 0.693·8-s − 1.29·11-s − 0.825·13-s + 0.777·14-s − 0.359·16-s + 0.155·17-s − 1.16·19-s + 2.02·22-s + 1.84·23-s + 1.29·26-s − 0.718·28-s + 0.185·29-s − 1.12·31-s + 1.25·32-s − 0.243·34-s + 0.153·37-s + 1.82·38-s − 1.73·41-s + 0.311·43-s − 1.86·44-s − 2.88·46-s + 1.39·47-s − 0.752·49-s − 1.19·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3108301328 |
L(21) |
≈ |
0.3108301328 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+2.21T+2T2 |
| 7 | 1+1.31T+7T2 |
| 11 | 1+4.29T+11T2 |
| 13 | 1+2.97T+13T2 |
| 17 | 1−0.642T+17T2 |
| 19 | 1+5.07T+19T2 |
| 23 | 1−8.84T+23T2 |
| 31 | 1+6.27T+31T2 |
| 37 | 1−0.934T+37T2 |
| 41 | 1+11.0T+41T2 |
| 43 | 1−2.03T+43T2 |
| 47 | 1−9.57T+47T2 |
| 53 | 1+13.0T+53T2 |
| 59 | 1−2.55T+59T2 |
| 61 | 1−8.46T+61T2 |
| 67 | 1+12.9T+67T2 |
| 71 | 1+5.10T+71T2 |
| 73 | 1+16.0T+73T2 |
| 79 | 1+3.30T+79T2 |
| 83 | 1−5.24T+83T2 |
| 89 | 1−5.05T+89T2 |
| 97 | 1+2.04T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.084214920528082389992513022662, −7.38185137562722214846042288431, −7.01089278134334667569510429605, −6.15730940538852303152032400188, −5.19334302910783722460392386525, −4.53871982187785527874185606198, −3.19445895249833723337321642318, −2.53460544967714176890197326784, −1.64012778103215486149588899014, −0.35654533144548996928599311603,
0.35654533144548996928599311603, 1.64012778103215486149588899014, 2.53460544967714176890197326784, 3.19445895249833723337321642318, 4.53871982187785527874185606198, 5.19334302910783722460392386525, 6.15730940538852303152032400188, 7.01089278134334667569510429605, 7.38185137562722214846042288431, 8.084214920528082389992513022662