L(s) = 1 | + (−0.0871 + 0.996i)2-s + (−0.984 − 0.173i)4-s + (0.700 + 0.326i)5-s + (4.53 − 1.65i)7-s + (0.258 − 0.965i)8-s + (−0.386 + 0.668i)10-s + (−2.42 − 4.19i)11-s + (−2.50 − 3.57i)13-s + (1.25 + 4.66i)14-s + (0.939 + 0.342i)16-s + (1.37 − 1.96i)17-s + (5.73 − 0.501i)19-s + (−0.632 − 0.443i)20-s + (4.39 − 2.04i)22-s + (−5.80 + 1.55i)23-s + ⋯ |
L(s) = 1 | + (−0.0616 + 0.704i)2-s + (−0.492 − 0.0868i)4-s + (0.313 + 0.145i)5-s + (1.71 − 0.624i)7-s + (0.0915 − 0.341i)8-s + (−0.122 + 0.211i)10-s + (−0.730 − 1.26i)11-s + (−0.694 − 0.992i)13-s + (0.334 + 1.24i)14-s + (0.234 + 0.0855i)16-s + (0.334 − 0.477i)17-s + (1.31 − 0.115i)19-s + (−0.141 − 0.0990i)20-s + (0.936 − 0.436i)22-s + (−1.21 + 0.324i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.994+0.106i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.994+0.106i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.994+0.106i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(557,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.994+0.106i)
|
Particular Values
L(1) |
≈ |
1.59032−0.0853091i |
L(21) |
≈ |
1.59032−0.0853091i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0871−0.996i)T |
| 3 | 1 |
| 37 | 1+(−2.35−5.60i)T |
good | 5 | 1+(−0.700−0.326i)T+(3.21+3.83i)T2 |
| 7 | 1+(−4.53+1.65i)T+(5.36−4.49i)T2 |
| 11 | 1+(2.42+4.19i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2.50+3.57i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−1.37+1.96i)T+(−5.81−15.9i)T2 |
| 19 | 1+(−5.73+0.501i)T+(18.7−3.29i)T2 |
| 23 | 1+(5.80−1.55i)T+(19.9−11.5i)T2 |
| 29 | 1+(−1.94−0.520i)T+(25.1+14.5i)T2 |
| 31 | 1+(2.21+2.21i)T+31iT2 |
| 41 | 1+(1.55−8.84i)T+(−38.5−14.0i)T2 |
| 43 | 1+(−5.76+5.76i)T−43iT2 |
| 47 | 1+(−8.09−4.67i)T+(23.5+40.7i)T2 |
| 53 | 1+(−0.878+2.41i)T+(−40.6−34.0i)T2 |
| 59 | 1+(−3.50−7.51i)T+(−37.9+45.1i)T2 |
| 61 | 1+(3.07−2.15i)T+(20.8−57.3i)T2 |
| 67 | 1+(−4.27−11.7i)T+(−51.3+43.0i)T2 |
| 71 | 1+(−6.82+8.13i)T+(−12.3−69.9i)T2 |
| 73 | 1−5.96iT−73T2 |
| 79 | 1+(5.34−11.4i)T+(−50.7−60.5i)T2 |
| 83 | 1+(7.54−1.32i)T+(77.9−28.3i)T2 |
| 89 | 1+(8.54−3.98i)T+(57.2−68.1i)T2 |
| 97 | 1+(0.616+2.30i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39963147887729987211691124458, −9.718589316742069574656643484481, −8.318543722569496369108722445211, −7.935876557063147740694375924402, −7.25472978652460767740899158241, −5.71335392981183234237030337527, −5.33730080082233370093608828257, −4.20715632134125164433991710545, −2.74159571757286144782158211099, −0.951860138645242554113452201642,
1.73482657963743804581310465442, 2.28684806745712378893729677947, 4.09928220529845719730496240419, 4.97855838042070299254215779789, 5.62664756695663617447180166607, 7.37981354197648554725433295759, 7.906115259097675550756245607921, 8.999970681750513351734863541067, 9.712350186179226493230755177292, 10.54738479038107834215712968272