L(s) = 1 | + (−0.0871 + 0.996i)2-s + (−0.984 − 0.173i)4-s + (0.700 + 0.326i)5-s + (4.53 − 1.65i)7-s + (0.258 − 0.965i)8-s + (−0.386 + 0.668i)10-s + (−2.42 − 4.19i)11-s + (−2.50 − 3.57i)13-s + (1.25 + 4.66i)14-s + (0.939 + 0.342i)16-s + (1.37 − 1.96i)17-s + (5.73 − 0.501i)19-s + (−0.632 − 0.443i)20-s + (4.39 − 2.04i)22-s + (−5.80 + 1.55i)23-s + ⋯ |
L(s) = 1 | + (−0.0616 + 0.704i)2-s + (−0.492 − 0.0868i)4-s + (0.313 + 0.145i)5-s + (1.71 − 0.624i)7-s + (0.0915 − 0.341i)8-s + (−0.122 + 0.211i)10-s + (−0.730 − 1.26i)11-s + (−0.694 − 0.992i)13-s + (0.334 + 1.24i)14-s + (0.234 + 0.0855i)16-s + (0.334 − 0.477i)17-s + (1.31 − 0.115i)19-s + (−0.141 − 0.0990i)20-s + (0.936 − 0.436i)22-s + (−1.21 + 0.324i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.106i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.106i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.59032 - 0.0853091i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.59032 - 0.0853091i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0871 - 0.996i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-2.35 - 5.60i)T \) |
good | 5 | \( 1 + (-0.700 - 0.326i)T + (3.21 + 3.83i)T^{2} \) |
| 7 | \( 1 + (-4.53 + 1.65i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (2.42 + 4.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.50 + 3.57i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (-1.37 + 1.96i)T + (-5.81 - 15.9i)T^{2} \) |
| 19 | \( 1 + (-5.73 + 0.501i)T + (18.7 - 3.29i)T^{2} \) |
| 23 | \( 1 + (5.80 - 1.55i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-1.94 - 0.520i)T + (25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (2.21 + 2.21i)T + 31iT^{2} \) |
| 41 | \( 1 + (1.55 - 8.84i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (-5.76 + 5.76i)T - 43iT^{2} \) |
| 47 | \( 1 + (-8.09 - 4.67i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.878 + 2.41i)T + (-40.6 - 34.0i)T^{2} \) |
| 59 | \( 1 + (-3.50 - 7.51i)T + (-37.9 + 45.1i)T^{2} \) |
| 61 | \( 1 + (3.07 - 2.15i)T + (20.8 - 57.3i)T^{2} \) |
| 67 | \( 1 + (-4.27 - 11.7i)T + (-51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (-6.82 + 8.13i)T + (-12.3 - 69.9i)T^{2} \) |
| 73 | \( 1 - 5.96iT - 73T^{2} \) |
| 79 | \( 1 + (5.34 - 11.4i)T + (-50.7 - 60.5i)T^{2} \) |
| 83 | \( 1 + (7.54 - 1.32i)T + (77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (8.54 - 3.98i)T + (57.2 - 68.1i)T^{2} \) |
| 97 | \( 1 + (0.616 + 2.30i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39963147887729987211691124458, −9.718589316742069574656643484481, −8.318543722569496369108722445211, −7.935876557063147740694375924402, −7.25472978652460767740899158241, −5.71335392981183234237030337527, −5.33730080082233370093608828257, −4.20715632134125164433991710545, −2.74159571757286144782158211099, −0.951860138645242554113452201642,
1.73482657963743804581310465442, 2.28684806745712378893729677947, 4.09928220529845719730496240419, 4.97855838042070299254215779789, 5.62664756695663617447180166607, 7.37981354197648554725433295759, 7.906115259097675550756245607921, 8.999970681750513351734863541067, 9.712350186179226493230755177292, 10.54738479038107834215712968272