L(s) = 1 | + (0.0871 + 0.996i)2-s + (−0.984 + 0.173i)4-s + (−3.03 + 1.41i)5-s + (−1.63 − 0.593i)7-s + (−0.258 − 0.965i)8-s + (−1.67 − 2.90i)10-s + (0.408 − 0.708i)11-s + (3.82 − 5.46i)13-s + (0.449 − 1.67i)14-s + (0.939 − 0.342i)16-s + (−0.771 − 1.10i)17-s + (−1.63 − 0.143i)19-s + (2.74 − 1.92i)20-s + (0.741 + 0.345i)22-s + (4.85 + 1.30i)23-s + ⋯ |
L(s) = 1 | + (0.0616 + 0.704i)2-s + (−0.492 + 0.0868i)4-s + (−1.35 + 0.633i)5-s + (−0.616 − 0.224i)7-s + (−0.0915 − 0.341i)8-s + (−0.529 − 0.917i)10-s + (0.123 − 0.213i)11-s + (1.06 − 1.51i)13-s + (0.120 − 0.447i)14-s + (0.234 − 0.0855i)16-s + (−0.187 − 0.267i)17-s + (−0.375 − 0.0328i)19-s + (0.613 − 0.429i)20-s + (0.158 + 0.0736i)22-s + (1.01 + 0.271i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.793+0.609i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.793+0.609i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.793+0.609i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(611,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.793+0.609i)
|
Particular Values
L(1) |
≈ |
0.692346−0.235240i |
L(21) |
≈ |
0.692346−0.235240i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0871−0.996i)T |
| 3 | 1 |
| 37 | 1+(−4.15−4.44i)T |
good | 5 | 1+(3.03−1.41i)T+(3.21−3.83i)T2 |
| 7 | 1+(1.63+0.593i)T+(5.36+4.49i)T2 |
| 11 | 1+(−0.408+0.708i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−3.82+5.46i)T+(−4.44−12.2i)T2 |
| 17 | 1+(0.771+1.10i)T+(−5.81+15.9i)T2 |
| 19 | 1+(1.63+0.143i)T+(18.7+3.29i)T2 |
| 23 | 1+(−4.85−1.30i)T+(19.9+11.5i)T2 |
| 29 | 1+(3.12−0.836i)T+(25.1−14.5i)T2 |
| 31 | 1+(−5.52+5.52i)T−31iT2 |
| 41 | 1+(0.631+3.58i)T+(−38.5+14.0i)T2 |
| 43 | 1+(7.38+7.38i)T+43iT2 |
| 47 | 1+(2.69−1.55i)T+(23.5−40.7i)T2 |
| 53 | 1+(1.64+4.52i)T+(−40.6+34.0i)T2 |
| 59 | 1+(−3.21+6.88i)T+(−37.9−45.1i)T2 |
| 61 | 1+(9.61+6.73i)T+(20.8+57.3i)T2 |
| 67 | 1+(−1.99+5.49i)T+(−51.3−43.0i)T2 |
| 71 | 1+(7.41+8.83i)T+(−12.3+69.9i)T2 |
| 73 | 1+6.79iT−73T2 |
| 79 | 1+(−3.68−7.89i)T+(−50.7+60.5i)T2 |
| 83 | 1+(−8.80−1.55i)T+(77.9+28.3i)T2 |
| 89 | 1+(4.08+1.90i)T+(57.2+68.1i)T2 |
| 97 | 1+(2.31−8.63i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55654072460096924278946238585, −9.459690649792886892853163294730, −8.311175144417039071428391503374, −7.86177788437599141743705070693, −6.88136915696703809660136602134, −6.18283122525973951605841583670, −4.95890576675275804469076101246, −3.68454885456507905286486386586, −3.18422521082688788867308286986, −0.43049277759133843827155740965,
1.34685332882723795604818224346, 3.05007891741258367612622883405, 4.10456004055660333727060006002, 4.63203312481063445882096467510, 6.15884312984330382919257187675, 7.10285527230391148202890227951, 8.348726023114897360418677680308, 8.847580127483380161942492587755, 9.669646127144300892904142293545, 10.89907079499436518003660856464