L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.448 − 1.67i)5-s + (0.633 − 1.09i)7-s + (0.707 − 0.707i)8-s + 1.73·10-s − 2.44·11-s + (0.366 − 0.0980i)13-s + (0.896 + 0.896i)14-s + (0.500 + 0.866i)16-s + (−6.24 − 1.67i)17-s + (−5.09 + 1.36i)19-s + (−0.448 + 1.67i)20-s + (0.633 − 2.36i)22-s + (−2.44 + 2.44i)23-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (−0.433 − 0.249i)4-s + (−0.200 − 0.748i)5-s + (0.239 − 0.415i)7-s + (0.249 − 0.249i)8-s + 0.547·10-s − 0.738·11-s + (0.101 − 0.0272i)13-s + (0.239 + 0.239i)14-s + (0.125 + 0.216i)16-s + (−1.51 − 0.405i)17-s + (−1.16 + 0.313i)19-s + (−0.100 + 0.374i)20-s + (0.135 − 0.504i)22-s + (−0.510 + 0.510i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.318253 - 0.441462i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.318253 - 0.441462i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (4.69 + 3.86i)T \) |
good | 5 | \( 1 + (0.448 + 1.67i)T + (-4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.633 + 1.09i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 2.44T + 11T^{2} \) |
| 13 | \( 1 + (-0.366 + 0.0980i)T + (11.2 - 6.5i)T^{2} \) |
| 17 | \( 1 + (6.24 + 1.67i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (5.09 - 1.36i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (2.44 - 2.44i)T - 23iT^{2} \) |
| 29 | \( 1 + (6.12 + 6.12i)T + 29iT^{2} \) |
| 31 | \( 1 + (-5.73 + 5.73i)T - 31iT^{2} \) |
| 41 | \( 1 + (2.89 - 5.01i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.267 - 0.267i)T + 43iT^{2} \) |
| 47 | \( 1 + 4.24iT - 47T^{2} \) |
| 53 | \( 1 + (-5.22 + 3.01i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.79 - 1.55i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (2.86 + 10.6i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (3.63 + 2.09i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.12 + 1.22i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.39iT - 73T^{2} \) |
| 79 | \( 1 + (3.36 - 0.901i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (-3.10 + 1.79i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.10 + 4.12i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.366 - 0.366i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15811084900956790462747297145, −9.198049493956212662487223625003, −8.384689489570842420830098925828, −7.78095735257748501369530617884, −6.74674857767966815821958254550, −5.78690164049919864103163838394, −4.71618941877889700905297065031, −4.05111291404073753373981057168, −2.15202898439888007987714522803, −0.29157420529835669830939098201,
1.99381195249715373085267894109, 2.91476556795921281214558140393, 4.13494628923853959211672468714, 5.15693866801822024287442296485, 6.44902257247318876356956554427, 7.26537866432331529632725949643, 8.564630022989225841198221621650, 8.832852237725522020241453721344, 10.35354839015437447487699223493, 10.64400117104226275108570621856