Properties

Label 2-666-111.8-c1-0-8
Degree 22
Conductor 666666
Sign 0.316+0.948i-0.316 + 0.948i
Analytic cond. 5.318035.31803
Root an. cond. 2.306082.30608
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.448 − 1.67i)5-s + (0.633 − 1.09i)7-s + (0.707 − 0.707i)8-s + 1.73·10-s − 2.44·11-s + (0.366 − 0.0980i)13-s + (0.896 + 0.896i)14-s + (0.500 + 0.866i)16-s + (−6.24 − 1.67i)17-s + (−5.09 + 1.36i)19-s + (−0.448 + 1.67i)20-s + (0.633 − 2.36i)22-s + (−2.44 + 2.44i)23-s + ⋯
L(s)  = 1  + (−0.183 + 0.683i)2-s + (−0.433 − 0.249i)4-s + (−0.200 − 0.748i)5-s + (0.239 − 0.415i)7-s + (0.249 − 0.249i)8-s + 0.547·10-s − 0.738·11-s + (0.101 − 0.0272i)13-s + (0.239 + 0.239i)14-s + (0.125 + 0.216i)16-s + (−1.51 − 0.405i)17-s + (−1.16 + 0.313i)19-s + (−0.100 + 0.374i)20-s + (0.135 − 0.504i)22-s + (−0.510 + 0.510i)23-s + ⋯

Functional equation

Λ(s)=(666s/2ΓC(s)L(s)=((0.316+0.948i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(666s/2ΓC(s+1/2)L(s)=((0.316+0.948i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 666666    =    232372 \cdot 3^{2} \cdot 37
Sign: 0.316+0.948i-0.316 + 0.948i
Analytic conductor: 5.318035.31803
Root analytic conductor: 2.306082.30608
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ666(341,)\chi_{666} (341, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 666, ( :1/2), 0.316+0.948i)(2,\ 666,\ (\ :1/2),\ -0.316 + 0.948i)

Particular Values

L(1)L(1) \approx 0.3182530.441462i0.318253 - 0.441462i
L(12)L(\frac12) \approx 0.3182530.441462i0.318253 - 0.441462i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
3 1 1
37 1+(4.69+3.86i)T 1 + (4.69 + 3.86i)T
good5 1+(0.448+1.67i)T+(4.33+2.5i)T2 1 + (0.448 + 1.67i)T + (-4.33 + 2.5i)T^{2}
7 1+(0.633+1.09i)T+(3.56.06i)T2 1 + (-0.633 + 1.09i)T + (-3.5 - 6.06i)T^{2}
11 1+2.44T+11T2 1 + 2.44T + 11T^{2}
13 1+(0.366+0.0980i)T+(11.26.5i)T2 1 + (-0.366 + 0.0980i)T + (11.2 - 6.5i)T^{2}
17 1+(6.24+1.67i)T+(14.7+8.5i)T2 1 + (6.24 + 1.67i)T + (14.7 + 8.5i)T^{2}
19 1+(5.091.36i)T+(16.49.5i)T2 1 + (5.09 - 1.36i)T + (16.4 - 9.5i)T^{2}
23 1+(2.442.44i)T23iT2 1 + (2.44 - 2.44i)T - 23iT^{2}
29 1+(6.12+6.12i)T+29iT2 1 + (6.12 + 6.12i)T + 29iT^{2}
31 1+(5.73+5.73i)T31iT2 1 + (-5.73 + 5.73i)T - 31iT^{2}
41 1+(2.895.01i)T+(20.535.5i)T2 1 + (2.89 - 5.01i)T + (-20.5 - 35.5i)T^{2}
43 1+(0.2670.267i)T+43iT2 1 + (-0.267 - 0.267i)T + 43iT^{2}
47 1+4.24iT47T2 1 + 4.24iT - 47T^{2}
53 1+(5.22+3.01i)T+(26.545.8i)T2 1 + (-5.22 + 3.01i)T + (26.5 - 45.8i)T^{2}
59 1+(5.791.55i)T+(51.0+29.5i)T2 1 + (-5.79 - 1.55i)T + (51.0 + 29.5i)T^{2}
61 1+(2.86+10.6i)T+(52.8+30.5i)T2 1 + (2.86 + 10.6i)T + (-52.8 + 30.5i)T^{2}
67 1+(3.63+2.09i)T+(33.5+58.0i)T2 1 + (3.63 + 2.09i)T + (33.5 + 58.0i)T^{2}
71 1+(2.12+1.22i)T+(35.5+61.4i)T2 1 + (2.12 + 1.22i)T + (35.5 + 61.4i)T^{2}
73 16.39iT73T2 1 - 6.39iT - 73T^{2}
79 1+(3.360.901i)T+(68.439.5i)T2 1 + (3.36 - 0.901i)T + (68.4 - 39.5i)T^{2}
83 1+(3.10+1.79i)T+(41.571.8i)T2 1 + (-3.10 + 1.79i)T + (41.5 - 71.8i)T^{2}
89 1+(1.10+4.12i)T+(77.044.5i)T2 1 + (-1.10 + 4.12i)T + (-77.0 - 44.5i)T^{2}
97 1+(0.3660.366i)T+97iT2 1 + (-0.366 - 0.366i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.15811084900956790462747297145, −9.198049493956212662487223625003, −8.384689489570842420830098925828, −7.78095735257748501369530617884, −6.74674857767966815821958254550, −5.78690164049919864103163838394, −4.71618941877889700905297065031, −4.05111291404073753373981057168, −2.15202898439888007987714522803, −0.29157420529835669830939098201, 1.99381195249715373085267894109, 2.91476556795921281214558140393, 4.13494628923853959211672468714, 5.15693866801822024287442296485, 6.44902257247318876356956554427, 7.26537866432331529632725949643, 8.564630022989225841198221621650, 8.832852237725522020241453721344, 10.35354839015437447487699223493, 10.64400117104226275108570621856

Graph of the ZZ-function along the critical line