L(s) = 1 | + (0.987 − 1.42i)3-s + (1.77 − 3.07i)5-s + (−0.793 + 2.52i)7-s + (−1.04 − 2.81i)9-s + (0.396 − 0.229i)11-s + 0.799i·13-s + (−2.62 − 5.57i)15-s + (5.48 − 3.16i)17-s + (2.61 − 4.53i)19-s + (2.80 + 3.62i)21-s + (−1.55 + 2.68i)23-s + (−3.82 − 6.61i)25-s + (−5.03 − 1.28i)27-s − 2.60·29-s + (−4.42 + 2.55i)31-s + ⋯ |
L(s) = 1 | + (0.570 − 0.821i)3-s + (0.795 − 1.37i)5-s + (−0.299 + 0.953i)7-s + (−0.349 − 0.936i)9-s + (0.119 − 0.0690i)11-s + 0.221i·13-s + (−0.678 − 1.43i)15-s + (1.33 − 0.767i)17-s + (0.600 − 1.03i)19-s + (0.612 + 0.790i)21-s + (−0.323 + 0.559i)23-s + (−0.764 − 1.32i)25-s + (−0.969 − 0.246i)27-s − 0.483·29-s + (−0.794 + 0.458i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0454 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0454 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.36806 - 1.43175i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36806 - 1.43175i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.987 + 1.42i)T \) |
| 7 | \( 1 + (0.793 - 2.52i)T \) |
good | 5 | \( 1 + (-1.77 + 3.07i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.396 + 0.229i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 0.799iT - 13T^{2} \) |
| 17 | \( 1 + (-5.48 + 3.16i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.61 + 4.53i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.55 - 2.68i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.60T + 29T^{2} \) |
| 31 | \( 1 + (4.42 - 2.55i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.89 + 1.67i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 10.1iT - 41T^{2} \) |
| 43 | \( 1 + 3.56T + 43T^{2} \) |
| 47 | \( 1 + (-2.15 + 3.73i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.16 - 2.02i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.49 + 0.864i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.60 - 2.66i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.00979 + 0.0169i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.04T + 71T^{2} \) |
| 73 | \( 1 + (-4.15 - 7.19i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-10.8 - 6.28i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.694iT - 83T^{2} \) |
| 89 | \( 1 + (-7.02 - 4.05i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 7.05T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.731074623525236474319698040614, −9.352741255333461294727981671632, −8.686856249447476017613409443419, −7.81078589898530498210631421721, −6.73811668030010362790073119906, −5.63786084997223137936134320262, −5.11780887158178350736269835648, −3.40028989636158812846409190320, −2.21132700434993000056065984500, −1.07043757071507766182307170335,
1.99217638538576373870997584096, 3.35019886992347232424303298698, 3.77951459014214125908812035734, 5.37324899490790599022827867599, 6.22862948685174109395008411183, 7.32981516720244522751962434966, 7.994998442160396849806893306568, 9.318074357632843878651825324050, 10.21783214801160026401356972273, 10.27873003985308187772340585951