L(s) = 1 | − 4.90·2-s + 16.1·4-s + 2.10·7-s − 39.7·8-s + 40.3·11-s + 61.7·13-s − 10.3·14-s + 66.5·16-s − 99.2·17-s + 134.·19-s − 197.·22-s − 76.4·23-s − 303.·26-s + 33.8·28-s + 236.·29-s + 243.·31-s − 8.27·32-s + 487.·34-s + 57.4·37-s − 660.·38-s − 411.·41-s + 102.·43-s + 649.·44-s + 375.·46-s + 260.·47-s − 338.·49-s + 994.·52-s + ⋯ |
L(s) = 1 | − 1.73·2-s + 2.01·4-s + 0.113·7-s − 1.75·8-s + 1.10·11-s + 1.31·13-s − 0.197·14-s + 1.03·16-s − 1.41·17-s + 1.62·19-s − 1.91·22-s − 0.693·23-s − 2.28·26-s + 0.228·28-s + 1.51·29-s + 1.41·31-s − 0.0457·32-s + 2.45·34-s + 0.255·37-s − 2.81·38-s − 1.56·41-s + 0.364·43-s + 2.22·44-s + 1.20·46-s + 0.808·47-s − 0.987·49-s + 2.65·52-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(675s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.011951163 |
L(21) |
≈ |
1.011951163 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+4.90T+8T2 |
| 7 | 1−2.10T+343T2 |
| 11 | 1−40.3T+1.33e3T2 |
| 13 | 1−61.7T+2.19e3T2 |
| 17 | 1+99.2T+4.91e3T2 |
| 19 | 1−134.T+6.85e3T2 |
| 23 | 1+76.4T+1.21e4T2 |
| 29 | 1−236.T+2.43e4T2 |
| 31 | 1−243.T+2.97e4T2 |
| 37 | 1−57.4T+5.06e4T2 |
| 41 | 1+411.T+6.89e4T2 |
| 43 | 1−102.T+7.95e4T2 |
| 47 | 1−260.T+1.03e5T2 |
| 53 | 1+75.4T+1.48e5T2 |
| 59 | 1+39.2T+2.05e5T2 |
| 61 | 1+675.T+2.26e5T2 |
| 67 | 1+601.T+3.00e5T2 |
| 71 | 1−222.T+3.57e5T2 |
| 73 | 1+297.T+3.89e5T2 |
| 79 | 1+95.6T+4.93e5T2 |
| 83 | 1−3.08T+5.71e5T2 |
| 89 | 1−1.34e3T+7.04e5T2 |
| 97 | 1−1.48e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.966209534330282307583862733229, −9.094948017171529039436944893565, −8.586915611400940022711131782860, −7.76454627256167357763963981239, −6.68013598294086809194357647346, −6.20036895870315709240743655571, −4.49449715127709360659026504732, −3.10380614250885153935170072674, −1.68312266626246378905505047641, −0.810388981678696396101618511468,
0.810388981678696396101618511468, 1.68312266626246378905505047641, 3.10380614250885153935170072674, 4.49449715127709360659026504732, 6.20036895870315709240743655571, 6.68013598294086809194357647346, 7.76454627256167357763963981239, 8.586915611400940022711131782860, 9.094948017171529039436944893565, 9.966209534330282307583862733229